Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\left(15x-24\right)\left(3x-0\right)=0
0 алу өчен, 0 һәм 9 тапкырлагыз.
15x\left(3x-0\right)-24\left(3x-0\right)=0
15x-24 3x-0'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
3\times 15xx-24\times 3x=0
Элементларның тәртибен үзгәртегез.
3\times 15x^{2}-24\times 3x=0
x^{2} алу өчен, x һәм x тапкырлагыз.
45x^{2}-72x=0
45 алу өчен, 3 һәм 15 тапкырлагыз. -72 алу өчен, -24 һәм 3 тапкырлагыз.
x\left(45x-72\right)=0
x'ны чыгартыгыз.
x=0 x=\frac{8}{5}
Тигезләмә чишелешләрен табу өчен, x=0 һәм 45x-72=0 чишегез.
\left(15x-24\right)\left(3x-0\right)=0
0 алу өчен, 0 һәм 9 тапкырлагыз.
15x\left(3x-0\right)-24\left(3x-0\right)=0
15x-24 3x-0'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
3\times 15xx-24\times 3x=0
Элементларның тәртибен үзгәртегез.
3\times 15x^{2}-24\times 3x=0
x^{2} алу өчен, x һәм x тапкырлагыз.
45x^{2}-72x=0
45 алу өчен, 3 һәм 15 тапкырлагыз. -72 алу өчен, -24 һәм 3 тапкырлагыз.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}}}{2\times 45}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 45'ны a'га, -72'ны b'га һәм 0'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±72}{2\times 45}
\left(-72\right)^{2}'нан квадрат тамырын чыгартыгыз.
x=\frac{72±72}{2\times 45}
-72 санның капма-каршысы - 72.
x=\frac{72±72}{90}
2'ны 45 тапкыр тапкырлагыз.
x=\frac{144}{90}
Хәзер ± плюс булганда, x=\frac{72±72}{90} тигезләмәсен чишегез. 72'ны 72'га өстәгез.
x=\frac{8}{5}
18 чыгартып һәм ташлап, \frac{144}{90} өлешен иң түбән буыннарга кадәр киметү.
x=\frac{0}{90}
Хәзер ± минус булганда, x=\frac{72±72}{90} тигезләмәсен чишегез. 72'ны 72'нан алыгыз.
x=0
0'ны 90'га бүлегез.
x=\frac{8}{5} x=0
Тигезләмә хәзер чишелгән.
\left(15x-24\right)\left(3x-0\right)=0
0 алу өчен, 0 һәм 9 тапкырлагыз.
15x\left(3x-0\right)-24\left(3x-0\right)=0
15x-24 3x-0'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
3\times 15xx-24\times 3x=0
Элементларның тәртибен үзгәртегез.
3\times 15x^{2}-24\times 3x=0
x^{2} алу өчен, x һәм x тапкырлагыз.
45x^{2}-72x=0
45 алу өчен, 3 һәм 15 тапкырлагыз. -72 алу өчен, -24 һәм 3 тапкырлагыз.
\frac{45x^{2}-72x}{45}=\frac{0}{45}
Ике якны 45-га бүлегез.
x^{2}+\left(-\frac{72}{45}\right)x=\frac{0}{45}
45'га бүлү 45'га тапкырлауны кире кага.
x^{2}-\frac{8}{5}x=\frac{0}{45}
9 чыгартып һәм ташлап, \frac{-72}{45} өлешен иң түбән буыннарга кадәр киметү.
x^{2}-\frac{8}{5}x=0
0'ны 45'га бүлегез.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=\left(-\frac{4}{5}\right)^{2}
-\frac{4}{5}-не алу өчен, -\frac{8}{5} — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{4}{5}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{16}{25}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{4}{5} квадратын табыгыз.
\left(x-\frac{4}{5}\right)^{2}=\frac{16}{25}
x^{2}-\frac{8}{5}x+\frac{16}{25} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-\frac{4}{5}=\frac{4}{5} x-\frac{4}{5}=-\frac{4}{5}
Гадиләштерегез.
x=\frac{8}{5} x=0
Тигезләмәнең ике ягына \frac{4}{5} өстәгез.