y_1 өчен чишелеш
y_{1}\in \left(-\sqrt{-\left(x_{1}-h\right)^{2}+r^{2}}+k,\sqrt{-\left(x_{1}-h\right)^{2}+r^{2}}+k\right)
\left(x_{1}>h+r\text{ and }x_{1}<h-r\right)\text{ or }\left(x_{1}>h-r\text{ and }x_{1}<h+r\right)\text{ or }\left(x_{1}>h-|r|\text{ and }x_{1}<|r|+h\text{ and }x_{1}\leq h-r\text{ and }x_{1}\geq h+r\right)\text{ or }\left(x_{1}>h-|r|\text{ and }x_{1}<|r|+h\text{ and }x_{1}\leq h+r\text{ and }x_{1}\geq h-r\right)
x_1 өчен чишелеш
x_{1}\in \left(-\sqrt{-\left(y_{1}-k\right)^{2}+r^{2}}+h,\sqrt{-\left(y_{1}-k\right)^{2}+r^{2}}+h\right)
\left(y_{1}>k-r\text{ and }y_{1}<k+r\right)\text{ or }\left(y_{1}>k+r\text{ and }y_{1}<k-r\right)\text{ or }\left(y_{1}>k-|r|\text{ and }y_{1}<|r|+k\text{ and }y_{1}\geq k+r\text{ and }y_{1}\leq k-r\right)\text{ or }\left(y_{1}>k-|r|\text{ and }y_{1}<|r|+k\text{ and }y_{1}\geq k-r\text{ and }y_{1}\leq k+r\right)
Викторина
Algebra
5 проблемаларга охшаш:
( x _ { 1 } - h ) ^ { 2 } + ( y _ { 1 } - k ) ^ { 2 } < r ^ { 2 }
Уртаклык
Клип тактага күчереп
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}