Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Үзгәртүчән x -3,-1-нең бер кыйммәтенә дә тигез булырга мөмкин түгел, чөнки нольгә бүлү билгеләнмәгән. Тигезләмәнең ике өлешен 4\left(x+1\right)\left(x+3\right)-га, x+3,4\left(x^{2}+4x+3\right)'ның иң ким гомуми дәрәҗәсенә тапкырлагыз.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x+1-ны x+3'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}+4x+3-ны x-2'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}-x-2 тапкырлаучы.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 3'ны \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} тапкыр тапкырлагыз.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} һәм \frac{7x-5}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5-да тапкырлаулар башкарыгыз.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Охшаш терминнарны 3x^{2}+3x-6x-6+7x-5-да берләштерегез.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. \left(x-2\right)\left(x+1\right) һәм x+1-нең иң ким гомуми кабатлы саны — \left(x-2\right)\left(x+1\right). \frac{3x}{x+1}'ны \frac{x-2}{x-2} тапкыр тапкырлагыз.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} һәм \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right)-да тапкырлаулар башкарыгыз.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Охшаш терминнарны 3x^{2}+4x-11-3x^{2}+6x-да берләштерегез.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} бер вакланма буларак чагылдыру.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
4x+4 5'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 20x+20'ны \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} тапкыр тапкырлагыз.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} һәм \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)-да тапкырлаулар башкарыгыз.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Охшаш терминнарны 10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40-да берләштерегез.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
x-2-ны x+1'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
9x^{2}'ны ике яктан алыгыз.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
x^{2}-x-2 тапкырлаучы.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. -9x^{2}'ны \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} тапкыр тапкырлагыз.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} һәм \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)-да тапкырлаулар башкарыгыз.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
Охшаш терминнарны 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}-да берләштерегез.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
43x'ны ике яктан алыгыз.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
x-2-ны x+1'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
x^{2}-x-2 тапкырлаучы.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. -43x'ны \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} тапкыр тапкырлагыз.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} һәм \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)-да тапкырлаулар башкарыгыз.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
Охшаш терминнарны x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x-да берләштерегез.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
8'ны ике яктан алыгыз.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
x-2-ны x+1'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
x^{2}-x-2 тапкырлаучы.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 8'ны \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} тапкыр тапкырлагыз.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} һәм \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)-да тапкырлаулар башкарыгыз.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
Охшаш терминнарны x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16-да берләштерегез.
x^{4}-5x^{3}-19x^{2}+29x+42=0
Үзгәртүчән x -1,2-нең бер кыйммәтенә дә тигез булырга мөмкин түгел, чөнки нольгә бүлү билгеләнмәгән. Тигезләмәнең ике ягын \left(x-2\right)\left(x+1\right) тапкырлагыз.
±42,±21,±14,±7,±6,±3,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 42 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{3}-6x^{2}-13x+42=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{3}-6x^{2}-13x+42 алу өчен, x^{4}-5x^{3}-19x^{2}+29x+42 x+1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±42,±21,±14,±7,±6,±3,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 42 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=2
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{2}-4x-21=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{2}-4x-21 алу өчен, x^{3}-6x^{2}-13x+42 x-2'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 1-ны a өчен, -4-не b өчен, һәм -21-не c өчен алыштырабыз.
x=\frac{4±10}{2}
Исәпләүләрне башкарыгыз.
x=-3 x=7
± — плюс, ә ± — минус булганда, x^{2}-4x-21=0 тигезләмәсен чишегез.
x=7
Алмашынучанга тигез булмаган кыйммәтләрне бетерегез.
x=-1 x=2 x=-3 x=7
Барлык табылган чишелешләрне күрсәтегез.
x=7
Үзгәртүчән x -1,2,-3-нең бер кыйммәтенә дә тигез булырга мөмкин түгел.