Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Җәегез
Tick mark Image

Уртаклык

\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{6}x^{2}y^{2} алу өчен, \frac{2}{3}x^{2}y^{2} һәм -\frac{3}{2}x^{2}y^{2} берләштерегз.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{6}x^{2}y^{2}\right)^{2} киңәйтегез.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
2'ның куәтен -\frac{5}{6} исәпләгез һәм \frac{25}{36} алыгыз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{8}xy алу өчен, \frac{1}{4}xy һәм -\frac{7}{8}xy берләштерегз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{8}xy\right)^{2} киңәйтегез.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
2'ның куәтен -\frac{5}{8} исәпләгез һәм \frac{25}{64} алыгыз.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
x^{2}y^{2}'дан санаучыда да, ваклаучыда да кыскарту.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{36}x^{2}y^{2}'ны \frac{25}{64}'ның кире зурлыгына тапкырлап, \frac{25}{36}x^{2}y^{2}'ны \frac{25}{64}'га бүлегез.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{400}{9} алу өчен, \frac{25}{36} һәм 64 тапкырлагыз.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{16}{9}x^{2}y^{2} алу өчен, \frac{400}{9}x^{2}y^{2} 25'га бүлегез.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{3}{2}x^{2}y^{2} алу өчен, \frac{5}{3}x^{2}y^{2} һәм -\frac{1}{6}x^{2}y^{2} берләштерегз.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{5}{18}x^{2}y^{2} алу өчен, \frac{16}{9}x^{2}y^{2} һәм -\frac{3}{2}x^{2}y^{2} берләштерегз.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
\frac{14}{15}xy алу өчен, \frac{4}{3}xy һәм -\frac{2}{5}xy берләштерегз.
\frac{7}{27}x^{2}y^{2}xy
\frac{7}{27} алу өчен, \frac{5}{18} һәм \frac{14}{15} тапкырлагыз.
\frac{7}{27}x^{3}y^{2}y
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\frac{7}{27}x^{3}y^{3}
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{6}x^{2}y^{2} алу өчен, \frac{2}{3}x^{2}y^{2} һәм -\frac{3}{2}x^{2}y^{2} берләштерегз.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{6}x^{2}y^{2}\right)^{2} киңәйтегез.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Санның куәтен башка куәткә күтәрү өчен, экспоненталарны тапкырлагыз. 4 алу өчен, 2 һәм 2 тапкырлагыз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
2'ның куәтен -\frac{5}{6} исәпләгез һәм \frac{25}{36} алыгыз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{8}xy алу өчен, \frac{1}{4}xy һәм -\frac{7}{8}xy берләштерегз.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{8}xy\right)^{2} киңәйтегез.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
2'ның куәтен -\frac{5}{8} исәпләгез һәм \frac{25}{64} алыгыз.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
x^{2}y^{2}'дан санаучыда да, ваклаучыда да кыскарту.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{36}x^{2}y^{2}'ны \frac{25}{64}'ның кире зурлыгына тапкырлап, \frac{25}{36}x^{2}y^{2}'ны \frac{25}{64}'га бүлегез.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{400}{9} алу өчен, \frac{25}{36} һәм 64 тапкырлагыз.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{16}{9}x^{2}y^{2} алу өчен, \frac{400}{9}x^{2}y^{2} 25'га бүлегез.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{3}{2}x^{2}y^{2} алу өчен, \frac{5}{3}x^{2}y^{2} һәм -\frac{1}{6}x^{2}y^{2} берләштерегз.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{5}{18}x^{2}y^{2} алу өчен, \frac{16}{9}x^{2}y^{2} һәм -\frac{3}{2}x^{2}y^{2} берләштерегз.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
\frac{14}{15}xy алу өчен, \frac{4}{3}xy һәм -\frac{2}{5}xy берләштерегз.
\frac{7}{27}x^{2}y^{2}xy
\frac{7}{27} алу өчен, \frac{5}{18} һәм \frac{14}{15} тапкырлагыз.
\frac{7}{27}x^{3}y^{2}y
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.
\frac{7}{27}x^{3}y^{3}
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 2 һәм 1 өстәгез.