( \sqrt { 8 } - 2 \sqrt { 025 ) } - ( \sqrt { 1 \frac { 1 } { 8 } } + \sqrt { 50 } + \frac { 2 } { 3 } \sqrt { 12 } )
Исәпләгез
-\frac{4\sqrt{3}}{3}-\frac{15\sqrt{2}}{4}-10\approx -17.612701936
Тапкырлаучы
\frac{-16 \sqrt{3} - 45 \sqrt{2} - 120}{12} = -17.612701935657608
Уртаклык
Клип тактага күчереп
2\sqrt{2}-2\sqrt{25}-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
8=2^{2}\times 2 тапкырлаучы. \sqrt{2^{2}\times 2} чыгарылмасының квадрат тамырын \sqrt{2^{2}}\sqrt{2} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 2^{2}'нан квадрат тамырын чыгартыгыз.
2\sqrt{2}-2\times 5-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
25 квадрат тамырны чишегез һәм 5'не табыгыз.
2\sqrt{2}-10-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
-10 алу өчен, -2 һәм 5 тапкырлагыз.
2\sqrt{2}-10-\left(\sqrt{\frac{8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
8 алу өчен, 1 һәм 8 тапкырлагыз.
2\sqrt{2}-10-\left(\sqrt{\frac{9}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
9 алу өчен, 8 һәм 1 өстәгез.
2\sqrt{2}-10-\left(\frac{\sqrt{9}}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
\sqrt{\frac{9}{8}} бүлекчәсенең квадрат тамырын \frac{\sqrt{9}}{\sqrt{8}} квадрат тамырының бүлекчәсе буларак яңадан языгыз.
2\sqrt{2}-10-\left(\frac{3}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
9 квадрат тамырны чишегез һәм 3'не табыгыз.
2\sqrt{2}-10-\left(\frac{3}{2\sqrt{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
8=2^{2}\times 2 тапкырлаучы. \sqrt{2^{2}\times 2} чыгарылмасының квадрат тамырын \sqrt{2^{2}}\sqrt{2} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 2^{2}'нан квадрат тамырын чыгартыгыз.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Санаучыны \sqrt{2} ваклаучысына тапкырлап, \frac{3}{2\sqrt{2}} ваклаучысын рационаллаштырыгыз.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\times 2}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
\sqrt{2} квадрат тамыры — 2.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
4 алу өчен, 2 һәм 2 тапкырлагыз.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+5\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
50=5^{2}\times 2 тапкырлаучы. \sqrt{5^{2}\times 2} чыгарылмасының квадрат тамырын \sqrt{5^{2}}\sqrt{2} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 5^{2}'нан квадрат тамырын чыгартыгыз.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
\frac{23}{4}\sqrt{2} алу өчен, \frac{3\sqrt{2}}{4} һәм 5\sqrt{2} берләштерегз.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\times 2\sqrt{3}\right)
12=2^{2}\times 3 тапкырлаучы. \sqrt{2^{2}\times 3} чыгарылмасының квадрат тамырын \sqrt{2^{2}}\sqrt{3} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 2^{2}'нан квадрат тамырын чыгартыгыз.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2\times 2}{3}\sqrt{3}\right)
\frac{2}{3}\times 2 бер вакланма буларак чагылдыру.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}\right)
4 алу өчен, 2 һәм 2 тапкырлагыз.
2\sqrt{2}-10-\frac{23}{4}\sqrt{2}-\frac{4}{3}\sqrt{3}
\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}-ның капма-каршысын табу өчен, һәрбер әгъзага капма-каршысын табыгыз.
-\frac{15}{4}\sqrt{2}-10-\frac{4}{3}\sqrt{3}
-\frac{15}{4}\sqrt{2} алу өчен, 2\sqrt{2} һәм -\frac{23}{4}\sqrt{2} берләштерегз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}