x, y өчен чишелеш
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
x, y өчен чишелеш (complex solution)
\left\{\begin{matrix}x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{; }x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{, }&m\neq -\frac{\sqrt{2}i}{2}\text{ and }m\neq \frac{\sqrt{2}i}{2}\\x=-\frac{\left(-2m+\sqrt{2}\right)^{2}-4}{2m\left(-2m+\sqrt{2}\right)}\text{, }y=\frac{2m^{2}-2\sqrt{2}m+3}{-2m+\sqrt{2}}\text{, }&m=-\frac{\sqrt{2}i}{2}\text{ or }m=\frac{\sqrt{2}i}{2}\end{matrix}\right.
Граф
Уртаклык
Клип тактага күчереп
y=mx-2m+\sqrt{2}
Икенче тигезләмәне гадиләштерү. m x-2'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
Башка тигезләмәдә y урынына mx-2m+\sqrt{2} куегыз, x^{2}+2y^{2}=8.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
mx-2m+\sqrt{2} квадратын табыгыз.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
2'ны m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2} тапкыр тапкырлагыз.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
x^{2}'ны 2m^{2}x^{2}'га өстәгез.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
Тигезләмәнең ике ягыннан 8 алыгыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1+2m^{2}'ны a'га, 2\times 2m\left(-2m+\sqrt{2}\right)'ны b'га һәм -4+8m^{2}-8m\sqrt{2}'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
2\times 2m\left(-2m+\sqrt{2}\right) квадратын табыгыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
-4'ны 1+2m^{2} тапкыр тапкырлагыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
-4-8m^{2}'ны -4+8m^{2}-8m\sqrt{2} тапкыр тапкырлагыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
16m^{2}\left(-2m+\sqrt{2}\right)^{2}'ны 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}'га өстәгез.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
16+32m^{2}+32m\sqrt{2}'нан квадрат тамырын чыгартыгыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
2'ны 1+2m^{2} тапкыр тапкырлагыз.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Хәзер ± плюс булганда, x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} тигезләмәсен чишегез. -4m\left(-2m+\sqrt{2}\right)'ны 4\sqrt{1+2m^{2}+2m\sqrt{2}}'га өстәгез.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
-4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}}'ны 2+4m^{2}'га бүлегез.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
Хәзер ± минус булганда, x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} тигезләмәсен чишегез. 4\sqrt{1+2m^{2}+2m\sqrt{2}}'ны -4m\left(-2m+\sqrt{2}\right)'нан алыгыз.
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}}'ны 2+4m^{2}'га бүлегез.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
x өчен ике чишелеш бар: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} һәм \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. Ике тигезләмәне дә канәгатьләндерүче y өчен туры килүче чишелешне табу өчен, y=mx-2m+\sqrt{2} тигезләмәсендә x урынына \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} куегыз.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
m'ны \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} тапкыр тапкырлагыз.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Хәзер y=mx-2m+\sqrt{2} тигезләмәсендә \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} урынына x куегыз һәм ике тигезләмәне дә канәгатьләндерүче y өчен туры килүче чишелешне табу өчен, чишегез.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
m'ны \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} тапкыр тапкырлагыз.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}