Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=7,5x+12y=7
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=7
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+7
Тигезләмәнең ике ягыннан y алыгыз.
5\left(-y+7\right)+12y=7
Башка тигезләмәдә x урынына -y+7 куегыз, 5x+12y=7.
-5y+35+12y=7
5'ны -y+7 тапкыр тапкырлагыз.
7y+35=7
-5y'ны 12y'га өстәгез.
7y=-28
Тигезләмәнең ике ягыннан 35 алыгыз.
y=-4
Ике якны 7-га бүлегез.
x=-\left(-4\right)+7
-4'ны y өчен x=-y+7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=4+7
-1'ны -4 тапкыр тапкырлагыз.
x=11
7'ны 4'га өстәгез.
x=11,y=-4
Система хәзер чишелгән.
x+y=7,5x+12y=7
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
\left(\begin{matrix}1&1\\5&12\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12-5}&-\frac{1}{12-5}\\-\frac{5}{12-5}&\frac{1}{12-5}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}&-\frac{1}{7}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\times 7-\frac{1}{7}\times 7\\-\frac{5}{7}\times 7+\frac{1}{7}\times 7\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=11,y=-4
x һәм y матрица элементларын чыгартыгыз.
x+y=7,5x+12y=7
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5x+5y=5\times 7,5x+12y=7
x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
5x+5y=35,5x+12y=7
Гадиләштерегез.
5x-5x+5y-12y=35-7
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 5x+12y=7'ны 5x+5y=35'нан алыгыз.
5y-12y=35-7
5x'ны -5x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 5x һәм -5x шартлар кыскартылган.
-7y=35-7
5y'ны -12y'га өстәгез.
-7y=28
35'ны -7'га өстәгез.
y=-4
Ике якны -7-га бүлегез.
5x+12\left(-4\right)=7
-4'ны y өчен 5x+12y=7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x-48=7
12'ны -4 тапкыр тапкырлагыз.
5x=55
Тигезләмәнең ике ягына 48 өстәгез.
x=11
Ике якны 5-га бүлегез.
x=11,y=-4
Система хәзер чишелгән.