Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x-y=2,3x-2y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x-y=2
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=y+2
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{2}\left(y+2\right)
Ике якны 2-га бүлегез.
x=\frac{1}{2}y+1
\frac{1}{2}'ны y+2 тапкыр тапкырлагыз.
3\left(\frac{1}{2}y+1\right)-2y=1
Башка тигезләмәдә x урынына \frac{y}{2}+1 куегыз, 3x-2y=1.
\frac{3}{2}y+3-2y=1
3'ны \frac{y}{2}+1 тапкыр тапкырлагыз.
-\frac{1}{2}y+3=1
\frac{3y}{2}'ны -2y'га өстәгез.
-\frac{1}{2}y=-2
Тигезләмәнең ике ягыннан 3 алыгыз.
y=4
Ике якны -2-га тапкырлагыз.
x=\frac{1}{2}\times 4+1
4'ны y өчен x=\frac{1}{2}y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=2+1
\frac{1}{2}'ны 4 тапкыр тапкырлагыз.
x=3
1'ны 2'га өстәгез.
x=3,y=4
Система хәзер чишелгән.
2x-y=2,3x-2y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-1}{2\left(-2\right)-\left(-3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 2-1\\3\times 2-2\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=4
x һәм y матрица элементларын чыгартыгыз.
2x-y=2,3x-2y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\left(-2\right)y=2
2x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
6x-3y=6,6x-4y=2
Гадиләштерегез.
6x-6x-3y+4y=6-2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x-4y=2'ны 6x-3y=6'нан алыгыз.
-3y+4y=6-2
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
y=6-2
-3y'ны 4y'га өстәгез.
y=4
6'ны -2'га өстәгез.
3x-2\times 4=1
4'ны y өчен 3x-2y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x-8=1
-2'ны 4 тапкыр тапкырлагыз.
3x=9
Тигезләмәнең ике ягына 8 өстәгез.
x=3
Ике якны 3-га бүлегез.
x=3,y=4
Система хәзер чишелгән.