Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+5y=16,3x-7y=24
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+5y=16
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-5y+16
Тигезләмәнең ике ягыннан 5y алыгыз.
x=\frac{1}{2}\left(-5y+16\right)
Ике якны 2-га бүлегез.
x=-\frac{5}{2}y+8
\frac{1}{2}'ны -5y+16 тапкыр тапкырлагыз.
3\left(-\frac{5}{2}y+8\right)-7y=24
Башка тигезләмәдә x урынына -\frac{5y}{2}+8 куегыз, 3x-7y=24.
-\frac{15}{2}y+24-7y=24
3'ны -\frac{5y}{2}+8 тапкыр тапкырлагыз.
-\frac{29}{2}y+24=24
-\frac{15y}{2}'ны -7y'га өстәгез.
-\frac{29}{2}y=0
Тигезләмәнең ике ягыннан 24 алыгыз.
y=0
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{29}{2} тигезләмәнең ике ягын да бүлегез.
x=8
0'ны y өчен x=-\frac{5}{2}y+8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=8,y=0
Система хәзер чишелгән.
2x+5y=16,3x-7y=24
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\24\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}2&5\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
\left(\begin{matrix}2&5\\3&-7\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-7\end{matrix}\right))\left(\begin{matrix}16\\24\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-5\times 3}&-\frac{5}{2\left(-7\right)-5\times 3}\\-\frac{3}{2\left(-7\right)-5\times 3}&\frac{2}{2\left(-7\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}&\frac{5}{29}\\\frac{3}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}16\\24\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{29}\times 16+\frac{5}{29}\times 24\\\frac{3}{29}\times 16-\frac{2}{29}\times 24\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=8,y=0
x һәм y матрица элементларын чыгартыгыз.
2x+5y=16,3x-7y=24
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 2x+3\times 5y=3\times 16,2\times 3x+2\left(-7\right)y=2\times 24
2x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
6x+15y=48,6x-14y=48
Гадиләштерегез.
6x-6x+15y+14y=48-48
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x-14y=48'ны 6x+15y=48'нан алыгыз.
15y+14y=48-48
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
29y=48-48
15y'ны 14y'га өстәгез.
29y=0
48'ны -48'га өстәгез.
y=0
Ике якны 29-га бүлегез.
3x=24
0'ны y өчен 3x-7y=24'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=8
Ике якны 3-га бүлегез.
x=8,y=0
Система хәзер чишелгән.