x, y өчен чишелеш
x=1
y=1
Граф
Уртаклык
Клип тактага күчереп
11x+3y=14,x+7y=8
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
11x+3y=14
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
11x=-3y+14
Тигезләмәнең ике ягыннан 3y алыгыз.
x=\frac{1}{11}\left(-3y+14\right)
Ике якны 11-га бүлегез.
x=-\frac{3}{11}y+\frac{14}{11}
\frac{1}{11}'ны -3y+14 тапкыр тапкырлагыз.
-\frac{3}{11}y+\frac{14}{11}+7y=8
Башка тигезләмәдә x урынына \frac{-3y+14}{11} куегыз, x+7y=8.
\frac{74}{11}y+\frac{14}{11}=8
-\frac{3y}{11}'ны 7y'га өстәгез.
\frac{74}{11}y=\frac{74}{11}
Тигезләмәнең ике ягыннан \frac{14}{11} алыгыз.
y=1
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{74}{11} тигезләмәнең ике ягын да бүлегез.
x=\frac{-3+14}{11}
1'ны y өчен x=-\frac{3}{11}y+\frac{14}{11}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{14}{11}'ны -\frac{3}{11}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=1
Система хәзер чишелгән.
11x+3y=14,x+7y=8
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}11&3\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\8\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}11&3\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
\left(\begin{matrix}11&3\\1&7\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{11\times 7-3}&-\frac{3}{11\times 7-3}\\-\frac{1}{11\times 7-3}&\frac{11}{11\times 7-3}\end{matrix}\right)\left(\begin{matrix}14\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{74}&-\frac{3}{74}\\-\frac{1}{74}&\frac{11}{74}\end{matrix}\right)\left(\begin{matrix}14\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{74}\times 14-\frac{3}{74}\times 8\\-\frac{1}{74}\times 14+\frac{11}{74}\times 8\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=1
x һәм y матрица элементларын чыгартыгыз.
11x+3y=14,x+7y=8
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
11x+3y=14,11x+11\times 7y=11\times 8
11x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 11'га тапкырлагыз.
11x+3y=14,11x+77y=88
Гадиләштерегез.
11x-11x+3y-77y=14-88
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 11x+77y=88'ны 11x+3y=14'нан алыгыз.
3y-77y=14-88
11x'ны -11x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 11x һәм -11x шартлар кыскартылган.
-74y=14-88
3y'ны -77y'га өстәгез.
-74y=-74
14'ны -88'га өстәгез.
y=1
Ике якны -74-га бүлегез.
x+7=8
1'ны y өчен x+7y=8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=1
Тигезләмәнең ике ягыннан 7 алыгыз.
x=1,y=1
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}