x, y өчен чишелеш
x=-13
y=8
Граф
Уртаклык
Клип тактага күчереп
-4x-3y=28,4x+6y=-4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
-4x-3y=28
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
-4x=3y+28
Тигезләмәнең ике ягына 3y өстәгез.
x=-\frac{1}{4}\left(3y+28\right)
Ике якны -4-га бүлегез.
x=-\frac{3}{4}y-7
-\frac{1}{4}'ны 3y+28 тапкыр тапкырлагыз.
4\left(-\frac{3}{4}y-7\right)+6y=-4
Башка тигезләмәдә x урынына -\frac{3y}{4}-7 куегыз, 4x+6y=-4.
-3y-28+6y=-4
4'ны -\frac{3y}{4}-7 тапкыр тапкырлагыз.
3y-28=-4
-3y'ны 6y'га өстәгез.
3y=24
Тигезләмәнең ике ягына 28 өстәгез.
y=8
Ике якны 3-га бүлегез.
x=-\frac{3}{4}\times 8-7
8'ны y өчен x=-\frac{3}{4}y-7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-6-7
-\frac{3}{4}'ны 8 тапкыр тапкырлагыз.
x=-13
-7'ны -6'га өстәгез.
x=-13,y=8
Система хәзер чишелгән.
-4x-3y=28,4x+6y=-4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\-4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right))\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right))\left(\begin{matrix}28\\-4\end{matrix}\right)
\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right))\left(\begin{matrix}28\\-4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-3\\4&6\end{matrix}\right))\left(\begin{matrix}28\\-4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-4\times 6-\left(-3\times 4\right)}&-\frac{-3}{-4\times 6-\left(-3\times 4\right)}\\-\frac{4}{-4\times 6-\left(-3\times 4\right)}&-\frac{4}{-4\times 6-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}28\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{4}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}28\\-4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 28-\frac{1}{4}\left(-4\right)\\\frac{1}{3}\times 28+\frac{1}{3}\left(-4\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-13,y=8
x һәм y матрица элементларын чыгартыгыз.
-4x-3y=28,4x+6y=-4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\left(-4\right)x+4\left(-3\right)y=4\times 28,-4\times 4x-4\times 6y=-4\left(-4\right)
-4x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны -4'га тапкырлагыз.
-16x-12y=112,-16x-24y=16
Гадиләштерегез.
-16x+16x-12y+24y=112-16
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -16x-24y=16'ны -16x-12y=112'нан алыгыз.
-12y+24y=112-16
-16x'ны 16x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -16x һәм 16x шартлар кыскартылган.
12y=112-16
-12y'ны 24y'га өстәгез.
12y=96
112'ны -16'га өстәгез.
y=8
Ике якны 12-га бүлегез.
4x+6\times 8=-4
8'ны y өчен 4x+6y=-4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x+48=-4
6'ны 8 тапкыр тапкырлагыз.
4x=-52
Тигезләмәнең ике ягыннан 48 алыгыз.
x=-13
Ике якны 4-га бүлегез.
x=-13,y=8
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}