Төп эчтәлеккә скип
Җилгеләгечне исәпләгез
Tick mark Image
Исәпләгез
Tick mark Image

Уртаклык

det(\left(\begin{matrix}2&1&0\\3&3&-1\\-2&-3&2\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}2&1&0&2&1\\3&3&-1&3&3\\-2&-3&2&-2&-3\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
2\times 3\times 2-\left(-2\right)=14
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-3\left(-1\right)\times 2+2\times 3=12
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
14-12
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
2
12'ны 14'нан алыгыз.
det(\left(\begin{matrix}2&1&0\\3&3&-1\\-2&-3&2\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
2det(\left(\begin{matrix}3&-1\\-3&2\end{matrix}\right))-det(\left(\begin{matrix}3&-1\\-2&2\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
2\left(3\times 2-\left(-3\left(-1\right)\right)\right)-\left(3\times 2-\left(-2\left(-1\right)\right)\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
2\times 3-4
Гадиләштерегез.
2
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.