Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

det(\left(\begin{matrix}1&-1&2\\1&3&-4\\-5&3&-3\end{matrix}\right))
Диагональләр ысулын кулланып, матрицаның вакланмасын табыгыз.
\left(\begin{matrix}1&-1&2&1&-1\\1&3&-4&1&3\\-5&3&-3&-5&3\end{matrix}\right)
Беренче ике багананы дүртенче һәм бишенче баганалар буларак кабатлап, башлангыч матрицаны киңәйтегез.
3\left(-3\right)-\left(-4\left(-5\right)\right)+2\times 3=-23
Өске сул язмасыннан башлап, диагональ буенча аска тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-5\times 3\times 2+3\left(-4\right)-3\left(-1\right)=-39
Астагы сул язмадан башлап, диагональ буенча өскә тапкырлагыз һәм нәтиҗә чыгарылмаларны өстәгез.
-23-\left(-39\right)
Аскы диагональ чыгарылмалары суммасыннан өске диагональ чыгарылмалары суммасын алыгыз.
16
-39'ны -23'нан алыгыз.
det(\left(\begin{matrix}1&-1&2\\1&3&-4\\-5&3&-3\end{matrix}\right))
Берәмлекләргә киңәйтү ысулын (шулай ук кофакторларга киңәйтү буларак билгеле) кулланып, матрицаның вакланмасын табыгыз.
det(\left(\begin{matrix}3&-4\\3&-3\end{matrix}\right))-\left(-det(\left(\begin{matrix}1&-4\\-5&-3\end{matrix}\right))\right)+2det(\left(\begin{matrix}1&3\\-5&3\end{matrix}\right))
Берәмлекләргә киңәйтү өчен, беренче юлның һәр элементын элементны үз эченә алган юлны һәм багананы бетереп төзегән 2\times 2 матрицаның вакланмасы булган аның берәмлегенә тапкырлагыз, аннары элементның позициясе тамгасына тапкырлагыз.
3\left(-3\right)-3\left(-4\right)-\left(-\left(-3-\left(-5\left(-4\right)\right)\right)\right)+2\left(3-\left(-5\times 3\right)\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен детерминант - ad-bc.
3-\left(-\left(-23\right)\right)+2\times 18
Гадиләштерегез.
16
Ахыргы нәтиҗәне алу өчен, элементларны өстәгез.