Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=3,-x+y=\frac{3}{4}
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=3
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+3
Тигезләмәнең ике ягыннан y алыгыз.
-\left(-y+3\right)+y=\frac{3}{4}
Башка тигезләмәдә x урынына -y+3 куегыз, -x+y=\frac{3}{4}.
y-3+y=\frac{3}{4}
-1'ны -y+3 тапкыр тапкырлагыз.
2y-3=\frac{3}{4}
y'ны y'га өстәгез.
2y=\frac{15}{4}
Тигезләмәнең ике ягына 3 өстәгез.
y=\frac{15}{8}
Ике якны 2-га бүлегез.
x=-\frac{15}{8}+3
\frac{15}{8}'ны y өчен x=-y+3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{9}{8}
3'ны -\frac{15}{8}'га өстәгез.
x=\frac{9}{8},y=\frac{15}{8}
Система хәзер чишелгән.
x+y=3,-x+y=\frac{3}{4}
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times \frac{3}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\times \frac{3}{4}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{15}{8}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{9}{8},y=\frac{15}{8}
x һәм y матрица элементларын чыгартыгыз.
x+y=3,-x+y=\frac{3}{4}
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x+x+y-y=3-\frac{3}{4}
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -x+y=\frac{3}{4}'ны x+y=3'нан алыгыз.
x+x=3-\frac{3}{4}
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
2x=3-\frac{3}{4}
x'ны x'га өстәгез.
2x=\frac{9}{4}
3'ны -\frac{3}{4}'га өстәгез.
x=\frac{9}{8}
Ике якны 2-га бүлегез.
-\frac{9}{8}+y=\frac{3}{4}
\frac{9}{8}'ны x өчен -x+y=\frac{3}{4}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=\frac{15}{8}
Тигезләмәнең ике ягына \frac{9}{8} өстәгез.
x=\frac{9}{8},y=\frac{15}{8}
Система хәзер чишелгән.