Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=0,5x+7y=3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=0
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y
Тигезләмәнең ике ягыннан 2y алыгыз.
5\left(-2\right)y+7y=3
Башка тигезләмәдә x урынына -2y куегыз, 5x+7y=3.
-10y+7y=3
5'ны -2y тапкыр тапкырлагыз.
-3y=3
-10y'ны 7y'га өстәгез.
y=-1
Ике якны -3-га бүлегез.
x=-2\left(-1\right)
-1'ны y өчен x=-2y'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=2
-2'ны -1 тапкыр тапкырлагыз.
x=2,y=-1
Система хәзер чишелгән.
x+2y=0,5x+7y=3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\5&7\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-2\times 5}&-\frac{2}{7-2\times 5}\\-\frac{5}{7-2\times 5}&\frac{1}{7-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3\\-\frac{1}{3}\times 3\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=2,y=-1
x һәм y матрица элементларын чыгартыгыз.
x+2y=0,5x+7y=3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5x+5\times 2y=0,5x+7y=3
x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
5x+10y=0,5x+7y=3
Гадиләштерегез.
5x-5x+10y-7y=-3
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 5x+7y=3'ны 5x+10y=0'нан алыгыз.
10y-7y=-3
5x'ны -5x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 5x һәм -5x шартлар кыскартылган.
3y=-3
10y'ны -7y'га өстәгез.
y=-1
Ике якны 3-га бүлегез.
5x+7\left(-1\right)=3
-1'ны y өчен 5x+7y=3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x-7=3
7'ны -1 тапкыр тапкырлагыз.
5x=10
Тигезләмәнең ике ягына 7 өстәгез.
x=2
Ике якны 5-га бүлегез.
x=2,y=-1
Система хәзер чишелгән.