Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

6x-y=-1,6x+y=-1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
6x-y=-1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
6x=y-1
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{6}\left(y-1\right)
Ике якны 6-га бүлегез.
x=\frac{1}{6}y-\frac{1}{6}
\frac{1}{6}'ны y-1 тапкыр тапкырлагыз.
6\left(\frac{1}{6}y-\frac{1}{6}\right)+y=-1
Башка тигезләмәдә x урынына \frac{-1+y}{6} куегыз, 6x+y=-1.
y-1+y=-1
6'ны \frac{-1+y}{6} тапкыр тапкырлагыз.
2y-1=-1
y'ны y'га өстәгез.
2y=0
Тигезләмәнең ике ягына 1 өстәгез.
y=0
Ике якны 2-га бүлегез.
x=-\frac{1}{6}
0'ны y өчен x=\frac{1}{6}y-\frac{1}{6}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{1}{6},y=0
Система хәзер чишелгән.
6x-y=-1,6x+y=-1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-\left(-6\right)}&-\frac{-1}{6-\left(-6\right)}\\-\frac{6}{6-\left(-6\right)}&\frac{6}{6-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-1\right)+\frac{1}{12}\left(-1\right)\\-\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-1\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\\0\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-\frac{1}{6},y=0
x һәм y матрица элементларын чыгартыгыз.
6x-y=-1,6x+y=-1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
6x-6x-y-y=-1+1
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x+y=-1'ны 6x-y=-1'нан алыгыз.
-y-y=-1+1
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
-2y=-1+1
-y'ны -y'га өстәгез.
-2y=0
-1'ны 1'га өстәгез.
y=0
Ике якны -2-га бүлегез.
6x=-1
0'ны y өчен 6x+y=-1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{1}{6}
Ике якны 6-га бүлегез.
x=-\frac{1}{6},y=0
Система хәзер чишелгән.