Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

4x-2y=8,5x+3y=-1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
4x-2y=8
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
4x=2y+8
Тигезләмәнең ике ягына 2y өстәгез.
x=\frac{1}{4}\left(2y+8\right)
Ике якны 4-га бүлегез.
x=\frac{1}{2}y+2
\frac{1}{4}'ны 8+2y тапкыр тапкырлагыз.
5\left(\frac{1}{2}y+2\right)+3y=-1
Башка тигезләмәдә x урынына \frac{y}{2}+2 куегыз, 5x+3y=-1.
\frac{5}{2}y+10+3y=-1
5'ны \frac{y}{2}+2 тапкыр тапкырлагыз.
\frac{11}{2}y+10=-1
\frac{5y}{2}'ны 3y'га өстәгез.
\frac{11}{2}y=-11
Тигезләмәнең ике ягыннан 10 алыгыз.
y=-2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{11}{2} тигезләмәнең ике ягын да бүлегез.
x=\frac{1}{2}\left(-2\right)+2
-2'ны y өчен x=\frac{1}{2}y+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-1+2
\frac{1}{2}'ны -2 тапкыр тапкырлагыз.
x=1
2'ны -1'га өстәгез.
x=1,y=-2
Система хәзер чишелгән.
4x-2y=8,5x+3y=-1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\times 5\right)}&-\frac{-2}{4\times 3-\left(-2\times 5\right)}\\-\frac{5}{4\times 3-\left(-2\times 5\right)}&\frac{4}{4\times 3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{5}{22}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 8+\frac{1}{11}\left(-1\right)\\-\frac{5}{22}\times 8+\frac{2}{11}\left(-1\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=-2
x һәм y матрица элементларын чыгартыгыз.
4x-2y=8,5x+3y=-1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5\times 4x+5\left(-2\right)y=5\times 8,4\times 5x+4\times 3y=4\left(-1\right)
4x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 4'га тапкырлагыз.
20x-10y=40,20x+12y=-4
Гадиләштерегез.
20x-20x-10y-12y=40+4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 20x+12y=-4'ны 20x-10y=40'нан алыгыз.
-10y-12y=40+4
20x'ны -20x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 20x һәм -20x шартлар кыскартылган.
-22y=40+4
-10y'ны -12y'га өстәгез.
-22y=44
40'ны 4'га өстәгез.
y=-2
Ике якны -22-га бүлегез.
5x+3\left(-2\right)=-1
-2'ны y өчен 5x+3y=-1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x-6=-1
3'ны -2 тапкыр тапкырлагыз.
5x=5
Тигезләмәнең ике ягына 6 өстәгез.
x=1
Ике якны 5-га бүлегез.
x=1,y=-2
Система хәзер чишелгән.