Тапкырлаучы
\frac{16\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)\left(9x^{4}+100y^{2}\right)}{50625}
Исәпләгез
\frac{16x^{8}}{625}-\frac{256y^{4}}{81}
Викторина
Algebra
5 проблемаларга охшаш:
\frac{ 16 { x }^{ 8 } }{ 625 } - \frac{ 256 { y }^{ 4 } }{ 81 }
Уртаклык
Клип тактага күчереп
\frac{16\left(81x^{8}-10000y^{4}\right)}{50625}
\frac{16}{50625}'ны чыгартыгыз.
\left(9x^{4}-100y^{2}\right)\left(9x^{4}+100y^{2}\right)
81x^{8}-10000y^{4} гадиләштерү. 81x^{8}-10000y^{4}-ны \left(9x^{4}\right)^{2}-\left(100y^{2}\right)^{2} буларак яңадан языгыз. Шакмаклар аермасын түбәндәге кагыйдәне кулланып таратырга була: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)
9x^{4}-100y^{2} гадиләштерү. 9x^{4}-100y^{2}-ны \left(3x^{2}\right)^{2}-\left(10y\right)^{2} буларак яңадан языгыз. Шакмаклар аермасын түбәндәге кагыйдәне кулланып таратырга була: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{16\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)\left(9x^{4}+100y^{2}\right)}{50625}
Таратылган аңлатманы яңадан языгыз.
\frac{81\times 16x^{8}}{50625}-\frac{625\times 256y^{4}}{50625}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 625 һәм 81-нең иң ким гомуми кабатлы саны — 50625. \frac{16x^{8}}{625}'ны \frac{81}{81} тапкыр тапкырлагыз. \frac{256y^{4}}{81}'ны \frac{625}{625} тапкыр тапкырлагыз.
\frac{81\times 16x^{8}-625\times 256y^{4}}{50625}
\frac{81\times 16x^{8}}{50625} һәм \frac{625\times 256y^{4}}{50625} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{1296x^{8}-160000y^{4}}{50625}
81\times 16x^{8}-625\times 256y^{4}-да тапкырлаулар башкарыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}