Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
x аерыгыз
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. x-2 һәм x+1-нең иң ким гомуми кабатлы саны — \left(x-2\right)\left(x+1\right). \frac{2}{x-2}'ны \frac{x+1}{x+1} тапкыр тапкырлагыз. \frac{3}{x+1}'ны \frac{x-2}{x-2} тапкыр тапкырлагыз.
\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} һәм \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)}
2\left(x+1\right)+3\left(x-2\right)-да тапкырлаулар башкарыгыз.
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
Охшаш терминнарны 2x+2+3x-6-да берләштерегез.
\frac{5x-4}{x^{2}-x-2}
\left(x-2\right)\left(x+1\right) киңәйтегез.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. x-2 һәм x+1-нең иң ким гомуми кабатлы саны — \left(x-2\right)\left(x+1\right). \frac{2}{x-2}'ны \frac{x+1}{x+1} тапкыр тапкырлагыз. \frac{3}{x+1}'ны \frac{x-2}{x-2} тапкыр тапкырлагыз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} һәм \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)})
2\left(x+1\right)+3\left(x-2\right)-да тапкырлаулар башкарыгыз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{\left(x-2\right)\left(x+1\right)})
Охшаш терминнарны 2x+2+3x-6-да берләштерегез.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}+x-2x-2})
Һәрбер x-2 терминын һәрбер x+1-нең терминына тапкырлап, бүлү үзлеген кулланыгыз.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}-x-2})
-x алу өчен, x һәм -2x берләштерегз.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-4)-\left(5x^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Теләсә кайсы ике аермалы функция өчен, ике функция бүленмәсенең чыгарылмасы - санаучының чыгарылмасына тапкырланган ваклаучы минус ваклаучының чыгарылмасына тапкырланган санаучы, барысы да квадраттагы ваклаучыга бүленгән.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{1-1}-\left(5x^{1}-4\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Күпбуын чыгарылмасы - аның элементарның чыгарылмалары суммасы. Константа элементның чыгарылмасы - 0. ax^{n} чыгарылмасы - nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Гадиләштерегез.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2'ны 5x^{0} тапкыр тапкырлагыз.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
5x^{1}-4'ны 2x^{1}-x^{0} тапкыр тапкырлагыз.
\frac{5x^{2}-5x^{1}-2\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез.
\frac{5x^{2}-5x^{1}-10x^{0}-\left(10x^{2}-5x^{1}-8x^{1}+4x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Гадиләштерегез.
\frac{-5x^{2}+8x^{1}-14x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Охшаш элементларны берләштерегез.
\frac{-5x^{2}+8x-14x^{0}}{\left(x^{2}-x-2\right)^{2}}
Теләсә кайсы t сан өчен, t^{1}=t.
\frac{-5x^{2}+8x-14}{\left(x^{2}-x-2\right)^{2}}
Теләсә кайсы t сан өчен, 0, t^{0}=1 башка.