Исәпләгез
\frac{\sqrt{5}}{3}\approx 0.745355992
Уртаклык
Клип тактага күчереп
\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
8=2^{2}\times 2 тапкырлаучы. \sqrt{2^{2}\times 2} чыгарылмасының квадрат тамырын \sqrt{2^{2}}\sqrt{2} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 2^{2}'нан квадрат тамырын чыгартыгыз.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
Санаучыны 2\sqrt{2}-\sqrt{5} ваклаучысына тапкырлап, \frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} ваклаучысын рационаллаштырыгыз.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right) гадиләштерү. Кагыйдәне кулланып, тапкырлауны башка квадратка әверелдерергә мөмкин: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\left(2\sqrt{2}\right)^{2} киңәйтегез.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
2'ның куәтен 2 исәпләгез һәм 4 алыгыз.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\sqrt{2} квадрат тамыры — 2.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
8 алу өчен, 4 һәм 2 тапкырлагыз.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
\sqrt{5} квадрат тамыры — 5.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
3 алу өчен, 8 5'нан алыгыз.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
8=2^{2}\times 2 тапкырлаучы. \sqrt{2^{2}\times 2} чыгарылмасының квадрат тамырын \sqrt{2^{2}}\sqrt{2} квадрат тамырының чыгарылмасы буларак яңадан языгыз. 2^{2}'нан квадрат тамырын чыгартыгыз.
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} бер вакланма буларак чагылдыру.
\frac{\sqrt{5}}{3}
-\sqrt{5}+2\sqrt{2}'дан санаучыда да, ваклаучыда да кыскарту.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}