Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

a+b=4 ab=1\times 4=4
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin w^{2}+aw+bw+4 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,4 2,2
ab pozitif olduğundan a ve b aynı işarete sahip. a+b pozitif olduğundan a ve b her ikisi de pozitif. Çarpımı 4 olan tam sayı çiftlerini listeleyin.
1+4=5 2+2=4
Her çiftin toplamını hesaplayın.
a=2 b=2
Çözüm, 4 toplamını veren çifttir.
\left(w^{2}+2w\right)+\left(2w+4\right)
w^{2}+4w+4 ifadesini \left(w^{2}+2w\right)+\left(2w+4\right) olarak yeniden yazın.
w\left(w+2\right)+2\left(w+2\right)
İkinci gruptaki ilk ve 2 w çarpanlarına ayırın.
\left(w+2\right)\left(w+2\right)
Dağılma özelliği kullanarak w+2 ortak terimi parantezine alın.
\left(w+2\right)^{2}
İki terimli kare olarak yazın.
factor(w^{2}+4w+4)
Bu üç terimli ifade, bir üç terimli ifadenin karesi biçimindedir ve ortak çarpanla çarpılmış olabilir. Üç terimli ifadenin kareleri baştaki ve sondaki terimlerin kareköklerini bularak çarpanlara ayrılabilir.
\sqrt{4}=2
4 son teriminin karekökünü bulun.
\left(w+2\right)^{2}
Trinomun karesi, baştaki ve sondaki terimlerin kare köklerinin toplamı veya farkı olan binomun karesidir ve işareti, trinomun karesinin ortasındaki terimin işaretidir.
w^{2}+4w+4=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
w=\frac{-4±\sqrt{4^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
w=\frac{-4±\sqrt{16-4\times 4}}{2}
4 sayısının karesi.
w=\frac{-4±\sqrt{16-16}}{2}
-4 ile 4 sayısını çarpın.
w=\frac{-4±\sqrt{0}}{2}
-16 ile 16 sayısını toplayın.
w=\frac{-4±0}{2}
0 sayısının karekökünü alın.
w^{2}+4w+4=\left(w-\left(-2\right)\right)\left(w-\left(-2\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. -2 yerine x_{1}, -2 yerine ise x_{2} koyun.
w^{2}+4w+4=\left(w+2\right)\left(w+2\right)
p-\left(-q\right) biçimindeki tüm ifadeleri p+q biçiminde olacak şekilde sadeleştirin.