m için çöz
m\in \mathrm{R}
Paylaş
Panoya kopyalandı
m^{2}-4m+8=0
Eşitsizliği çözmek için sol tarafı çarpanlarına ayırın. İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 8}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, şu ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü içinde a için 1, b için -4 ve c için 8 kullanın.
m=\frac{4±\sqrt{-16}}{2}
Hesaplamaları yapın.
0^{2}-4\times 0+8=8
Negatif bir sayının karekökü gerçek sayılar kümesinde tanımlanmadığından çözüm yoktur. m^{2}-4m+8 ifadesi herhangi bir m değeri için aynı işarete sahip. İşareti belirlemek amacıyla ifadenin değerini m=0 için hesaplayın.
m\in \mathrm{R}
m^{2}-4m+8 ifadesinin değeri her zaman pozitiftir. Eşitsizlik m\in \mathrm{R} için geçerli.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}