Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

a^{4}\left(b^{4}+1\right)-\left(b^{4}+1\right)
Gruplandırma a^{4}-b^{4}+a^{4}b^{4}-1=\left(a^{4}b^{4}+a^{4}\right)+\left(-b^{4}-1\right) yapın ve ikinci gruptaki ilk ve -1 a^{4} çarpanlara ayırın.
\left(b^{4}+1\right)\left(a^{4}-1\right)
Dağılma özelliği kullanarak b^{4}+1 ortak terimi parantezine alın.
\left(a^{2}-1\right)\left(a^{2}+1\right)
a^{4}-1 ifadesini dikkate alın. a^{4}-1 ifadesini \left(a^{2}\right)^{2}-1^{2} olarak yeniden yazın. Karelerin farkı şu kural kullanılarak çarpanlara ayrılabilir: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)
a^{2}-1 ifadesini dikkate alın. a^{2}-1 ifadesini a^{2}-1^{2} olarak yeniden yazın. Karelerin farkı şu kural kullanılarak çarpanlara ayrılabilir: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)\left(b^{4}+1\right)
Çarpanlarına ayrılan tüm ifadeyi yeniden yazın. Belirtilen polinomların herhangi bir rasyonel kökü olmadığından çarpanlarına ayrılmaz: a^{2}+1,b^{4}+1.