Ana içeriğe geç
C için çözün
Tick mark Image
d için çözün
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

\frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}C=\frac{n}{2}
Denklem standart biçimdedir.
\frac{\frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}Cd\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}=\frac{n}{2\times \frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}}
Her iki tarafı d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} ile bölün.
C=\frac{n}{2\times \frac{\sqrt{\sin(n)+1}+\sqrt{-\sin(n)+1}}{d\left(\sqrt{\sin(n)+1}-\sqrt{-\sin(n)+1}\right)}}
d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} ile bölme, d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} ile çarpma işlemini geri alır.
C=\frac{dn\left(-|\cos(n)|+1\right)}{2\sin(n)}
\frac{n}{2} sayısını d^{-1}\left(\sqrt{1+\sin(n)}+\sqrt{1-\sin(n)}\right)\left(\sqrt{1+\sin(n)}-\sqrt{1-\sin(n)}\right)^{-1} ile bölün.