K için çözün
K=\frac{3\tan(x)}{5}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
x için çözün
x=2\pi n_{1}+\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})+\pi \text{, }n_{1}\in \mathrm{Z}\text{, }\exists n_{3}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{2n_{3}-\frac{2\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})}{\pi }-1}{4}\text{ and }n_{1}<\frac{2n_{3}-\frac{2\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})}{\pi }+1}{4}\right)
x=2\pi n_{2}+\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})\text{, }n_{2}\in \mathrm{Z}\text{, }\exists n_{3}\in \mathrm{Z}\text{ : }\left(n_{3}>\frac{4n_{2}+\frac{2\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})}{\pi }-3}{2}\text{ and }n_{3}<\frac{4n_{2}+\frac{2\arcsin(\frac{5K}{\sqrt{25K^{2}+9}})}{\pi }-1}{2}\right)
Grafik
Paylaş
Panoya kopyalandı
5K=3\tan(x)
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
\frac{5K}{5}=\frac{3\tan(x)}{5}
Her iki tarafı 5 ile bölün.
K=\frac{3\tan(x)}{5}
5 ile bölme, 5 ile çarpma işlemini geri alır.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}