x için çözün
x=-1
x=6
Grafik
Paylaş
Panoya kopyalandı
-6=-xx+x\times 5
Sıfıra bölünme tanımlı olmadığından x değişkeni, 0 değerine eşit olamaz. Denklemin her iki tarafını x ile çarpın.
-6=-x^{2}+x\times 5
x ve x sayılarını çarparak x^{2} sonucunu bulun.
-x^{2}+x\times 5=-6
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
-x^{2}+x\times 5+6=0
Her iki tarafa 6 ekleyin.
-x^{2}+5x+6=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine -1, b yerine 5 ve c yerine 6 değerini koyarak çözün.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
5 sayısının karesi.
x=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
-4 ile -1 sayısını çarpın.
x=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
4 ile 6 sayısını çarpın.
x=\frac{-5±\sqrt{49}}{2\left(-1\right)}
24 ile 25 sayısını toplayın.
x=\frac{-5±7}{2\left(-1\right)}
49 sayısının karekökünü alın.
x=\frac{-5±7}{-2}
2 ile -1 sayısını çarpın.
x=\frac{2}{-2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-5±7}{-2} denklemini çözün. 7 ile -5 sayısını toplayın.
x=-1
2 sayısını -2 ile bölün.
x=-\frac{12}{-2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-5±7}{-2} denklemini çözün. 7 sayısını -5 sayısından çıkarın.
x=6
-12 sayısını -2 ile bölün.
x=-1 x=6
Denklem çözüldü.
-6=-xx+x\times 5
Sıfıra bölünme tanımlı olmadığından x değişkeni, 0 değerine eşit olamaz. Denklemin her iki tarafını x ile çarpın.
-6=-x^{2}+x\times 5
x ve x sayılarını çarparak x^{2} sonucunu bulun.
-x^{2}+x\times 5=-6
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
-x^{2}+5x=-6
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
\frac{-x^{2}+5x}{-1}=-\frac{6}{-1}
Her iki tarafı -1 ile bölün.
x^{2}+\frac{5}{-1}x=-\frac{6}{-1}
-1 ile bölme, -1 ile çarpma işlemini geri alır.
x^{2}-5x=-\frac{6}{-1}
5 sayısını -1 ile bölün.
x^{2}-5x=6
-6 sayısını -1 ile bölün.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
x teriminin katsayısı olan -5 sayısını 2 değerine bölerek -\frac{5}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{5}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
-\frac{5}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4} ile 6 sayısını toplayın.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Faktör x^{2}-5x+\frac{25}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Sadeleştirin.
x=6 x=-1
Denklemin her iki tarafına \frac{5}{2} ekleyin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}