x için çözün
x = \frac{5 \sqrt{393} - 85}{2} \approx 7,060569004
x=\frac{-5\sqrt{393}-85}{2}\approx -92,060569004
Grafik
Paylaş
Panoya kopyalandı
-425x+7500-5x^{2}=4250
15-x ile 5x+500 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
-425x+7500-5x^{2}-4250=0
Her iki taraftan 4250 sayısını çıkarın.
-425x+3250-5x^{2}=0
7500 sayısından 4250 sayısını çıkarıp 3250 sonucunu bulun.
-5x^{2}-425x+3250=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-425\right)±\sqrt{\left(-425\right)^{2}-4\left(-5\right)\times 3250}}{2\left(-5\right)}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine -5, b yerine -425 ve c yerine 3250 değerini koyarak çözün.
x=\frac{-\left(-425\right)±\sqrt{180625-4\left(-5\right)\times 3250}}{2\left(-5\right)}
-425 sayısının karesi.
x=\frac{-\left(-425\right)±\sqrt{180625+20\times 3250}}{2\left(-5\right)}
-4 ile -5 sayısını çarpın.
x=\frac{-\left(-425\right)±\sqrt{180625+65000}}{2\left(-5\right)}
20 ile 3250 sayısını çarpın.
x=\frac{-\left(-425\right)±\sqrt{245625}}{2\left(-5\right)}
65000 ile 180625 sayısını toplayın.
x=\frac{-\left(-425\right)±25\sqrt{393}}{2\left(-5\right)}
245625 sayısının karekökünü alın.
x=\frac{425±25\sqrt{393}}{2\left(-5\right)}
-425 sayısının tersi: 425.
x=\frac{425±25\sqrt{393}}{-10}
2 ile -5 sayısını çarpın.
x=\frac{25\sqrt{393}+425}{-10}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{425±25\sqrt{393}}{-10} denklemini çözün. 25\sqrt{393} ile 425 sayısını toplayın.
x=\frac{-5\sqrt{393}-85}{2}
425+25\sqrt{393} sayısını -10 ile bölün.
x=\frac{425-25\sqrt{393}}{-10}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{425±25\sqrt{393}}{-10} denklemini çözün. 25\sqrt{393} sayısını 425 sayısından çıkarın.
x=\frac{5\sqrt{393}-85}{2}
425-25\sqrt{393} sayısını -10 ile bölün.
x=\frac{-5\sqrt{393}-85}{2} x=\frac{5\sqrt{393}-85}{2}
Denklem çözüldü.
-425x+7500-5x^{2}=4250
15-x ile 5x+500 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
-425x-5x^{2}=4250-7500
Her iki taraftan 7500 sayısını çıkarın.
-425x-5x^{2}=-3250
4250 sayısından 7500 sayısını çıkarıp -3250 sonucunu bulun.
-5x^{2}-425x=-3250
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
\frac{-5x^{2}-425x}{-5}=-\frac{3250}{-5}
Her iki tarafı -5 ile bölün.
x^{2}+\left(-\frac{425}{-5}\right)x=-\frac{3250}{-5}
-5 ile bölme, -5 ile çarpma işlemini geri alır.
x^{2}+85x=-\frac{3250}{-5}
-425 sayısını -5 ile bölün.
x^{2}+85x=650
-3250 sayısını -5 ile bölün.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=650+\left(\frac{85}{2}\right)^{2}
x teriminin katsayısı olan 85 sayısını 2 değerine bölerek \frac{85}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına \frac{85}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}+85x+\frac{7225}{4}=650+\frac{7225}{4}
\frac{85}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}+85x+\frac{7225}{4}=\frac{9825}{4}
\frac{7225}{4} ile 650 sayısını toplayın.
\left(x+\frac{85}{2}\right)^{2}=\frac{9825}{4}
Faktör x^{2}+85x+\frac{7225}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{9825}{4}}
Denklemin her iki tarafının kare kökünü alın.
x+\frac{85}{2}=\frac{5\sqrt{393}}{2} x+\frac{85}{2}=-\frac{5\sqrt{393}}{2}
Sadeleştirin.
x=\frac{5\sqrt{393}-85}{2} x=\frac{-5\sqrt{393}-85}{2}
Denklemin her iki tarafından \frac{85}{2} çıkarın.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}