x için çözün
x=-26
x=25
Grafik
Paylaş
Panoya kopyalandı
a+b=1 ab=-650
Denklemi çözmek için x^{2}+x-650 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -650 olan tam sayı çiftlerini listeleyin.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
Her çiftin toplamını hesaplayın.
a=-25 b=26
Çözüm, 1 toplamını veren çifttir.
\left(x-25\right)\left(x+26\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=25 x=-26
Denklem çözümlerini bulmak için x-25=0 ve x+26=0 çözün.
a+b=1 ab=1\left(-650\right)=-650
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-650 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -650 olan tam sayı çiftlerini listeleyin.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
Her çiftin toplamını hesaplayın.
a=-25 b=26
Çözüm, 1 toplamını veren çifttir.
\left(x^{2}-25x\right)+\left(26x-650\right)
x^{2}+x-650 ifadesini \left(x^{2}-25x\right)+\left(26x-650\right) olarak yeniden yazın.
x\left(x-25\right)+26\left(x-25\right)
İkinci gruptaki ilk ve 26 x çarpanlarına ayırın.
\left(x-25\right)\left(x+26\right)
Dağılma özelliği kullanarak x-25 ortak terimi parantezine alın.
x=25 x=-26
Denklem çözümlerini bulmak için x-25=0 ve x+26=0 çözün.
x^{2}+x-650=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-1±\sqrt{1^{2}-4\left(-650\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine 1 ve c yerine -650 değerini koyarak çözün.
x=\frac{-1±\sqrt{1-4\left(-650\right)}}{2}
1 sayısının karesi.
x=\frac{-1±\sqrt{1+2600}}{2}
-4 ile -650 sayısını çarpın.
x=\frac{-1±\sqrt{2601}}{2}
2600 ile 1 sayısını toplayın.
x=\frac{-1±51}{2}
2601 sayısının karekökünü alın.
x=\frac{50}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-1±51}{2} denklemini çözün. 51 ile -1 sayısını toplayın.
x=25
50 sayısını 2 ile bölün.
x=-\frac{52}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-1±51}{2} denklemini çözün. 51 sayısını -1 sayısından çıkarın.
x=-26
-52 sayısını 2 ile bölün.
x=25 x=-26
Denklem çözüldü.
x^{2}+x-650=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
x^{2}+x-650-\left(-650\right)=-\left(-650\right)
Denklemin her iki tarafına 650 ekleyin.
x^{2}+x=-\left(-650\right)
-650 kendisinden çıkarıldığında 0 kalır.
x^{2}+x=650
-650 sayısını 0 sayısından çıkarın.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=650+\left(\frac{1}{2}\right)^{2}
x teriminin katsayısı olan 1 sayısını 2 değerine bölerek \frac{1}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına \frac{1}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}+x+\frac{1}{4}=650+\frac{1}{4}
\frac{1}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}+x+\frac{1}{4}=\frac{2601}{4}
\frac{1}{4} ile 650 sayısını toplayın.
\left(x+\frac{1}{2}\right)^{2}=\frac{2601}{4}
Faktör x^{2}+x+\frac{1}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2601}{4}}
Denklemin her iki tarafının kare kökünü alın.
x+\frac{1}{2}=\frac{51}{2} x+\frac{1}{2}=-\frac{51}{2}
Sadeleştirin.
x=25 x=-26
Denklemin her iki tarafından \frac{1}{2} çıkarın.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}