Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x^{2}+2x+1=16
\left(x+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
x^{2}+2x+1-16=0
Her iki taraftan 16 sayısını çıkarın.
x^{2}+2x-15=0
1 sayısından 16 sayısını çıkarıp -15 sonucunu bulun.
a+b=2 ab=-15
Denklemi çözmek için x^{2}+2x-15 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,15 -3,5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -15 olan tam sayı çiftlerini listeleyin.
-1+15=14 -3+5=2
Her çiftin toplamını hesaplayın.
a=-3 b=5
Çözüm, 2 toplamını veren çifttir.
\left(x-3\right)\left(x+5\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=3 x=-5
Denklem çözümlerini bulmak için x-3=0 ve x+5=0 çözün.
x^{2}+2x+1=16
\left(x+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
x^{2}+2x+1-16=0
Her iki taraftan 16 sayısını çıkarın.
x^{2}+2x-15=0
1 sayısından 16 sayısını çıkarıp -15 sonucunu bulun.
a+b=2 ab=1\left(-15\right)=-15
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-15 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,15 -3,5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -15 olan tam sayı çiftlerini listeleyin.
-1+15=14 -3+5=2
Her çiftin toplamını hesaplayın.
a=-3 b=5
Çözüm, 2 toplamını veren çifttir.
\left(x^{2}-3x\right)+\left(5x-15\right)
x^{2}+2x-15 ifadesini \left(x^{2}-3x\right)+\left(5x-15\right) olarak yeniden yazın.
x\left(x-3\right)+5\left(x-3\right)
İkinci gruptaki ilk ve 5 x çarpanlarına ayırın.
\left(x-3\right)\left(x+5\right)
Dağılma özelliği kullanarak x-3 ortak terimi parantezine alın.
x=3 x=-5
Denklem çözümlerini bulmak için x-3=0 ve x+5=0 çözün.
x^{2}+2x+1=16
\left(x+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
x^{2}+2x+1-16=0
Her iki taraftan 16 sayısını çıkarın.
x^{2}+2x-15=0
1 sayısından 16 sayısını çıkarıp -15 sonucunu bulun.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine 2 ve c yerine -15 değerini koyarak çözün.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
2 sayısının karesi.
x=\frac{-2±\sqrt{4+60}}{2}
-4 ile -15 sayısını çarpın.
x=\frac{-2±\sqrt{64}}{2}
60 ile 4 sayısını toplayın.
x=\frac{-2±8}{2}
64 sayısının karekökünü alın.
x=\frac{6}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-2±8}{2} denklemini çözün. 8 ile -2 sayısını toplayın.
x=3
6 sayısını 2 ile bölün.
x=-\frac{10}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-2±8}{2} denklemini çözün. 8 sayısını -2 sayısından çıkarın.
x=-5
-10 sayısını 2 ile bölün.
x=3 x=-5
Denklem çözüldü.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Denklemin her iki tarafının kare kökünü alın.
x+1=4 x+1=-4
Sadeleştirin.
x=3 x=-5
Denklemin her iki tarafından 1 çıkarın.