x için çözün
x=8
Grafik
Paylaş
Panoya kopyalandı
\sqrt{2x+33}=3+\sqrt{2x}
Denklemin her iki tarafından -\sqrt{2x} çıkarın.
\left(\sqrt{2x+33}\right)^{2}=\left(3+\sqrt{2x}\right)^{2}
Denklemin her iki tarafının karesini alın.
2x+33=\left(3+\sqrt{2x}\right)^{2}
2 sayısının \sqrt{2x+33} kuvvetini hesaplayarak 2x+33 sonucunu bulun.
2x+33=9+6\sqrt{2x}+\left(\sqrt{2x}\right)^{2}
\left(3+\sqrt{2x}\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
2x+33=9+6\sqrt{2x}+2x
2 sayısının \sqrt{2x} kuvvetini hesaplayarak 2x sonucunu bulun.
2x+33-6\sqrt{2x}=9+2x
Her iki taraftan 6\sqrt{2x} sayısını çıkarın.
2x+33-6\sqrt{2x}-2x=9
Her iki taraftan 2x sayısını çıkarın.
33-6\sqrt{2x}=9
2x ve -2x terimlerini birleştirerek 0 sonucunu elde edin.
-6\sqrt{2x}=9-33
Her iki taraftan 33 sayısını çıkarın.
-6\sqrt{2x}=-24
9 sayısından 33 sayısını çıkarıp -24 sonucunu bulun.
\sqrt{2x}=\frac{-24}{-6}
Her iki tarafı -6 ile bölün.
\sqrt{2x}=4
-24 sayısını -6 sayısına bölerek 4 sonucunu bulun.
2x=16
Denklemin her iki tarafının karesini alın.
\frac{2x}{2}=\frac{16}{2}
Her iki tarafı 2 ile bölün.
x=\frac{16}{2}
2 ile bölme, 2 ile çarpma işlemini geri alır.
x=8
16 sayısını 2 ile bölün.
\sqrt{2\times 8+33}-\sqrt{2\times 8}=3
\sqrt{2x+33}-\sqrt{2x}=3 denkleminde x yerine 8 ifadesini koyun.
3=3
Sadeleştirin. x=8 değeri denklemi karşılıyor.
x=8
Denklem \sqrt{2x+33}=\sqrt{2x}+3 benzersiz çözümü bulunuyor.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}