x için çöz
x\in \left(-\infty,-1\right)\cup \left(\frac{3}{2},\infty\right)
Grafik
Paylaş
Panoya kopyalandı
x+1>0 x+1<0
Sıfıra bölme tanımlanmadığı için payda x+1 sıfır olamaz. İki durum vardır.
x>-1
x+1 değerinin pozitif olduğu durumu düşünün. 1 değerini sağ tarafa taşıyın.
4-x<x+1
İlk eşitsizlik, x+1>0 için x+1 ile çarpıldığı yönü değiştirmez.
-x-x<-4+1
x içeren koşulları sol tarafa ve diğer tüm koşulları sağ tarafa taşıyın.
-2x<-3
Benzer terimleri birleştirin.
x>\frac{3}{2}
Her iki tarafı -2 ile bölün. -2 negatif olduğundan, eşitsizlik yönü değiştirilir.
x>\frac{3}{2}
Yukarıdan belirtilen x>-1 koşulunu düşünün. Sonuç aynı kalır.
x<-1
Artık x+1 negatif olduğunda da bu durumu düşünün. 1 değerini sağ tarafa taşıyın.
4-x>x+1
İlk eşitsizlik, x+1<0 için x+1 ile çarpıldığı yönü değiştirir.
-x-x>-4+1
x içeren koşulları sol tarafa ve diğer tüm koşulları sağ tarafa taşıyın.
-2x>-3
Benzer terimleri birleştirin.
x<\frac{3}{2}
Her iki tarafı -2 ile bölün. -2 negatif olduğundan, eşitsizlik yönü değiştirilir.
x<-1
Yukarıdan belirtilen x<-1 koşulunu düşünün.
x\in \left(-\infty,-1\right)\cup \left(\frac{3}{2},\infty\right)
Son çözüm, elde edilen çözümlerin birleşimidir.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}