ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=-2 ab=1\left(-24\right)=-24
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx-24 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,-24 2,-12 3,-8 4,-6
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -24
1-24=-23 2-12=-10 3-8=-5 4-6=-2
คำนวณผลรวมสำหรับแต่ละคู่
a=-6 b=4
โซลูชันเป็นคู่ที่จะให้ผลรวม -2
\left(x^{2}-6x\right)+\left(4x-24\right)
เขียน x^{2}-2x-24 ใหม่เป็น \left(x^{2}-6x\right)+\left(4x-24\right)
x\left(x-6\right)+4\left(x-6\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 4 ใน
\left(x-6\right)\left(x+4\right)
แยกตัวประกอบของพจน์ร่วม x-6 โดยใช้คุณสมบัติการแจกแจง
x^{2}-2x-24=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-24\right)}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-24\right)}}{2}
ยกกำลังสอง -2
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2}
คูณ -4 ด้วย -24
x=\frac{-\left(-2\right)±\sqrt{100}}{2}
เพิ่ม 4 ไปยัง 96
x=\frac{-\left(-2\right)±10}{2}
หารากที่สองของ 100
x=\frac{2±10}{2}
ตรงข้ามกับ -2 คือ 2
x=\frac{12}{2}
ตอนนี้ แก้สมการ x=\frac{2±10}{2} เมื่อ ± เป็นบวก เพิ่ม 2 ไปยัง 10
x=6
หาร 12 ด้วย 2
x=-\frac{8}{2}
ตอนนี้ แก้สมการ x=\frac{2±10}{2} เมื่อ ± เป็นลบ ลบ 10 จาก 2
x=-4
หาร -8 ด้วย 2
x^{2}-2x-24=\left(x-6\right)\left(x-\left(-4\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 6 สำหรับ x_{1} และ -4 สำหรับ x_{2}
x^{2}-2x-24=\left(x-6\right)\left(x+4\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q