หาค่า q
q = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
q=\frac{1-\sqrt{5}}{2}\approx -0.618033989
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
q^{2}-q=1
ลบ q จากทั้งสองด้าน
q^{2}-q-1=0
ลบ 1 จากทั้งสองด้าน
q=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, -1 แทน b และ -1 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
q=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
คูณ -4 ด้วย -1
q=\frac{-\left(-1\right)±\sqrt{5}}{2}
เพิ่ม 1 ไปยัง 4
q=\frac{1±\sqrt{5}}{2}
ตรงข้ามกับ -1 คือ 1
q=\frac{\sqrt{5}+1}{2}
ตอนนี้ แก้สมการ q=\frac{1±\sqrt{5}}{2} เมื่อ ± เป็นบวก เพิ่ม 1 ไปยัง \sqrt{5}
q=\frac{1-\sqrt{5}}{2}
ตอนนี้ แก้สมการ q=\frac{1±\sqrt{5}}{2} เมื่อ ± เป็นลบ ลบ \sqrt{5} จาก 1
q=\frac{\sqrt{5}+1}{2} q=\frac{1-\sqrt{5}}{2}
สมการได้รับการแก้ไขแล้ว
q^{2}-q=1
ลบ q จากทั้งสองด้าน
q^{2}-q+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
หาร -1 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{1}{2} จากนั้นเพิ่มกำลังสองของ -\frac{1}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
q^{2}-q+\frac{1}{4}=1+\frac{1}{4}
ยกกำลังสอง -\frac{1}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
q^{2}-q+\frac{1}{4}=\frac{5}{4}
เพิ่ม 1 ไปยัง \frac{1}{4}
\left(q-\frac{1}{2}\right)^{2}=\frac{5}{4}
ตัวประกอบq^{2}-q+\frac{1}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(q-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
หารากที่สองของทั้งสองข้างของสมการ
q-\frac{1}{2}=\frac{\sqrt{5}}{2} q-\frac{1}{2}=-\frac{\sqrt{5}}{2}
ทำให้ง่ายขึ้น
q=\frac{\sqrt{5}+1}{2} q=\frac{1-\sqrt{5}}{2}
เพิ่ม \frac{1}{2} ไปยังทั้งสองข้างของสมการ
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}