ข้ามไปที่เนื้อหาหลัก
หาอนุพันธ์ของ w.r.t. t
Tick mark Image
หาค่า
Tick mark Image

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{\left(2t^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})-2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(2t^{2}+1)}{\left(2t^{2}+1\right)^{2}}
สำหรับสองฟังก์ชันที่หาอนุพันธ์ได้ อนุพันธ์ของผลหารของทั้งสองฟังก์ชันคือ ตัวส่วนคูณด้วยอนุพันธ์ของตัวเศษลบด้วยตัวเศษคูณด้วยอนุพันธ์ของตัวส่วน ทั้งหมดถูกหารด้วยตัวส่วนที่ยกกำลังสองแล้ว
\frac{\left(2t^{2}+1\right)\times 2t^{1-1}-2t^{1}\times 2\times 2t^{2-1}}{\left(2t^{2}+1\right)^{2}}
อนุพันธ์ของพหุนามเป็นผลรวมของอนุพันธ์ของพจน์ในพหุนามนั้น อนุพันธ์ของพจน์คงตัวใดๆ คือ 0 อนุพันธ์ของ ax^{n} คือ nax^{n-1}
\frac{\left(2t^{2}+1\right)\times 2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{2t^{2}\times 2t^{0}+2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
ขยายโดยใช้คุณสมบัติการแจกแจง
\frac{2\times 2t^{2}+2t^{0}-2\times 4t^{1+1}}{\left(2t^{2}+1\right)^{2}}
เมื่อต้องการคูณเลขยกกำลังของฐานเดียวกัน เพิ่มเลขชี้กำลังของจำนวนเหล่านั้น
\frac{4t^{2}+2t^{0}-8t^{2}}{\left(2t^{2}+1\right)^{2}}
ดำเนินการทางคณิตศาสตร์
\frac{\left(4-8\right)t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
รวมพจน์ที่เหมือนกัน
\frac{-4t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
ลบ 8 จาก 4
\frac{2\left(-2t^{2}+t^{0}\right)}{\left(2t^{2}+1\right)^{2}}
แยกตัวประกอบ 2
\frac{2\left(-2t^{2}+1\right)}{\left(2t^{2}+1\right)^{2}}
สำหรับพจน์ใดๆ ที่ t ยกเว้น 0 ให้ t^{0}=1