แยกตัวประกอบ
\left(x+3\right)\left(2x+17\right)
หาค่า
\left(x+3\right)\left(2x+17\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
a+b=23 ab=2\times 51=102
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 2x^{2}+ax+bx+51 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,102 2,51 3,34 6,17
เนื่องจาก ab เป็นค่าบวก a และ b มีเครื่องหมายเดียวกัน เนื่องจาก a+b เป็นบวก a และ b เป็นค่าบวกทั้งคู่ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ 102
1+102=103 2+51=53 3+34=37 6+17=23
คำนวณผลรวมสำหรับแต่ละคู่
a=6 b=17
โซลูชันเป็นคู่ที่จะให้ผลรวม 23
\left(2x^{2}+6x\right)+\left(17x+51\right)
เขียน 2x^{2}+23x+51 ใหม่เป็น \left(2x^{2}+6x\right)+\left(17x+51\right)
2x\left(x+3\right)+17\left(x+3\right)
แยกตัวประกอบ 2x ในกลุ่มแรกและ 17 ใน
\left(x+3\right)\left(2x+17\right)
แยกตัวประกอบของพจน์ร่วม x+3 โดยใช้คุณสมบัติการแจกแจง
2x^{2}+23x+51=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-23±\sqrt{23^{2}-4\times 2\times 51}}{2\times 2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-23±\sqrt{529-4\times 2\times 51}}{2\times 2}
ยกกำลังสอง 23
x=\frac{-23±\sqrt{529-8\times 51}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-23±\sqrt{529-408}}{2\times 2}
คูณ -8 ด้วย 51
x=\frac{-23±\sqrt{121}}{2\times 2}
เพิ่ม 529 ไปยัง -408
x=\frac{-23±11}{2\times 2}
หารากที่สองของ 121
x=\frac{-23±11}{4}
คูณ 2 ด้วย 2
x=-\frac{12}{4}
ตอนนี้ แก้สมการ x=\frac{-23±11}{4} เมื่อ ± เป็นบวก เพิ่ม -23 ไปยัง 11
x=-3
หาร -12 ด้วย 4
x=-\frac{34}{4}
ตอนนี้ แก้สมการ x=\frac{-23±11}{4} เมื่อ ± เป็นลบ ลบ 11 จาก -23
x=-\frac{17}{2}
ทำเศษส่วน \frac{-34}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
2x^{2}+23x+51=2\left(x-\left(-3\right)\right)\left(x-\left(-\frac{17}{2}\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ -3 สำหรับ x_{1} และ -\frac{17}{2} สำหรับ x_{2}
2x^{2}+23x+51=2\left(x+3\right)\left(x+\frac{17}{2}\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q
2x^{2}+23x+51=2\left(x+3\right)\times \frac{2x+17}{2}
เพิ่ม \frac{17}{2} ไปยัง x ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
2x^{2}+23x+51=\left(x+3\right)\left(2x+17\right)
ยกเลิกการหาตัวหารร่วม 2 ใน 2 และ 2
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}