ข้ามไปที่เนื้อหาหลัก
แยกตัวประกอบ
Tick mark Image
หาค่า
Tick mark Image
กราฟ
แบบทดสอบ
Polynomial

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x^{2}-x-30
จัดเรียงพหุนามให้อยู่ในรูปแบบมาตรฐาน วางตามลำดับจากดีกรีที่มากที่สุดไปหาน้อยที่สุด
a+b=-1 ab=1\left(-30\right)=-30
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น x^{2}+ax+bx-30 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,-30 2,-15 3,-10 5,-6
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -30
1-30=-29 2-15=-13 3-10=-7 5-6=-1
คำนวณผลรวมสำหรับแต่ละคู่
a=-6 b=5
โซลูชันเป็นคู่ที่จะให้ผลรวม -1
\left(x^{2}-6x\right)+\left(5x-30\right)
เขียน x^{2}-x-30 ใหม่เป็น \left(x^{2}-6x\right)+\left(5x-30\right)
x\left(x-6\right)+5\left(x-6\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 5 ใน
\left(x-6\right)\left(x+5\right)
แยกตัวประกอบของพจน์ร่วม x-6 โดยใช้คุณสมบัติการแจกแจง
x^{2}-x-30=0
สมการพหุนามกำลังสองสามารถแยกตัวประกอบโดยใช้การแปลง ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ที่ x_{1} และ x_{2} เป็นผลเฉลยของสมการกำลังสอง ax^{2}+bx+c=0
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
คูณ -4 ด้วย -30
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
เพิ่ม 1 ไปยัง 120
x=\frac{-\left(-1\right)±11}{2}
หารากที่สองของ 121
x=\frac{1±11}{2}
ตรงข้ามกับ -1 คือ 1
x=\frac{12}{2}
ตอนนี้ แก้สมการ x=\frac{1±11}{2} เมื่อ ± เป็นบวก เพิ่ม 1 ไปยัง 11
x=6
หาร 12 ด้วย 2
x=-\frac{10}{2}
ตอนนี้ แก้สมการ x=\frac{1±11}{2} เมื่อ ± เป็นลบ ลบ 11 จาก 1
x=-5
หาร -10 ด้วย 2
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
แยกตัวประกอบนิพจน์เดิมด้วย ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ลบ 6 สำหรับ x_{1} และ -5 สำหรับ x_{2}
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
ทำนิพจน์ทั้งหมดของฟอร์ม p-\left(-q\right) เป็น p+q