ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ
แบบทดสอบ
Quadratic Equation

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x^{2}-5x+2=5
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-2 ด้วย 2x-1 และรวมพจน์ที่เหมือนกัน
2x^{2}-5x+2-5=0
ลบ 5 จากทั้งสองด้าน
2x^{2}-5x-3=0
ลบ 5 จาก 2 เพื่อรับ -3
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 2 แทน a, -5 แทน b และ -3 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
ยกกำลังสอง -5
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
คูณ -4 ด้วย 2
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
คูณ -8 ด้วย -3
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
เพิ่ม 25 ไปยัง 24
x=\frac{-\left(-5\right)±7}{2\times 2}
หารากที่สองของ 49
x=\frac{5±7}{2\times 2}
ตรงข้ามกับ -5 คือ 5
x=\frac{5±7}{4}
คูณ 2 ด้วย 2
x=\frac{12}{4}
ตอนนี้ แก้สมการ x=\frac{5±7}{4} เมื่อ ± เป็นบวก เพิ่ม 5 ไปยัง 7
x=3
หาร 12 ด้วย 4
x=-\frac{2}{4}
ตอนนี้ แก้สมการ x=\frac{5±7}{4} เมื่อ ± เป็นลบ ลบ 7 จาก 5
x=-\frac{1}{2}
ทำเศษส่วน \frac{-2}{4} ให้เป็นพจน์ต่ำสุดโดยลดทอนด้วย 2
x=3 x=-\frac{1}{2}
สมการได้รับการแก้ไขแล้ว
2x^{2}-5x+2=5
ใช้คุณสมบัติการแจกแจงเพื่อคูณ x-2 ด้วย 2x-1 และรวมพจน์ที่เหมือนกัน
2x^{2}-5x=5-2
ลบ 2 จากทั้งสองด้าน
2x^{2}-5x=3
ลบ 2 จาก 5 เพื่อรับ 3
\frac{2x^{2}-5x}{2}=\frac{3}{2}
หารทั้งสองข้างด้วย 2
x^{2}-\frac{5}{2}x=\frac{3}{2}
หารด้วย 2 เลิกทำการคูณด้วย 2
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
หาร -\frac{5}{2} สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ -\frac{5}{4} จากนั้นเพิ่มกำลังสองของ -\frac{5}{4} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
ยกกำลังสอง -\frac{5}{4} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
เพิ่ม \frac{3}{2} ไปยัง \frac{25}{16} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
ตัวประกอบx^{2}-\frac{5}{2}x+\frac{25}{16} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
หารากที่สองของทั้งสองข้างของสมการ
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
ทำให้ง่ายขึ้น
x=3 x=-\frac{1}{2}
เพิ่ม \frac{5}{4} ไปยังทั้งสองข้างของสมการ