แยกตัวประกอบ
\left(2x-1\right)\left(18x+5\right)
หาค่า
\left(2x-1\right)\left(18x+5\right)
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
36x^{2}-8x-5
คูณและรวมพจน์ที่เหมือนกัน
a+b=-8 ab=36\left(-5\right)=-180
แยกตัวประกอบนิพจน์โดยการจัดกลุ่ม ขั้นแรกนิพจน์จำเป็นต้องถูกเขียนใหม่เป็น 36x^{2}+ax+bx-5 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นค่าลบตัวเลขค่าลบมีค่าสัมบูรณ์ที่มากกว่าจำนวนบวก แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -180
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
คำนวณผลรวมสำหรับแต่ละคู่
a=-18 b=10
โซลูชันเป็นคู่ที่จะให้ผลรวม -8
\left(36x^{2}-18x\right)+\left(10x-5\right)
เขียน 36x^{2}-8x-5 ใหม่เป็น \left(36x^{2}-18x\right)+\left(10x-5\right)
18x\left(2x-1\right)+5\left(2x-1\right)
แยกตัวประกอบ 18x ในกลุ่มแรกและ 5 ใน
\left(2x-1\right)\left(18x+5\right)
แยกตัวประกอบของพจน์ร่วม 2x-1 โดยใช้คุณสมบัติการแจกแจง
36x^{2}-8x-5
คูณ 9 และ 4 เพื่อรับ 36
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}