ข้ามไปที่เนื้อหาหลัก
หาค่า x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

a+b=1 ab=-650
เมื่อต้องการแก้สมการปัจจัย x^{2}+x-650 โดยใช้สูตร x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -650
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
คำนวณผลรวมสำหรับแต่ละคู่
a=-25 b=26
โซลูชันเป็นคู่ที่จะให้ผลรวม 1
\left(x-25\right)\left(x+26\right)
เขียนนิพจน์แยกตัวประกอบใหม่ \left(x+a\right)\left(x+b\right) โดยใช้ค่าที่ได้รับ
x=25 x=-26
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-25=0 และ x+26=0
a+b=1 ab=1\left(-650\right)=-650
เมื่อต้องการแก้สมการ ให้แยกตัวประกอบทางด้านซ้ายมือโดยการจัดกลุ่ม ขั้นแรกต้องเขียนด้านซ้ายมือใหม่เป็น x^{2}+ax+bx-650 เมื่อต้องการค้นหา a และ b ให้ตั้งค่าระบบเพื่อแก้
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
เนื่องจาก ab เป็นค่าลบ a และ b มีสัญลักษณ์ตรงข้ามกัน เนื่องจาก a+b เป็นบวกจำนวนบวกมีค่าสัมบูรณ์ที่มากกว่าจุดลบ แสดงรายการคู่จำนวนเต็มดังกล่าวทั้งหมดที่ให้ผลิตภัณฑ์ -650
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
คำนวณผลรวมสำหรับแต่ละคู่
a=-25 b=26
โซลูชันเป็นคู่ที่จะให้ผลรวม 1
\left(x^{2}-25x\right)+\left(26x-650\right)
เขียน x^{2}+x-650 ใหม่เป็น \left(x^{2}-25x\right)+\left(26x-650\right)
x\left(x-25\right)+26\left(x-25\right)
แยกตัวประกอบ x ในกลุ่มแรกและ 26 ใน
\left(x-25\right)\left(x+26\right)
แยกตัวประกอบของพจน์ร่วม x-25 โดยใช้คุณสมบัติการแจกแจง
x=25 x=-26
เมื่อต้องการค้นหาโซลูชันสมการให้แก้ไข x-25=0 และ x+26=0
x^{2}+x-650=0
สมการทั้งหมดของรูปแบบ ax^{2}+bx+c=0 จะสามารถแก้ไขได้โดยใช้สูตรยกกำลัง: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ได้ สูตรยกกำลังจะช่วยให้ได้รับสองผลเฉลย หนึ่งคือเมื่อ ± เป็นบวกและอีกหนึ่งคือเมื่อเป็นลบ
x=\frac{-1±\sqrt{1^{2}-4\left(-650\right)}}{2}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1 แทน a, 1 แทน b และ -650 แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-1±\sqrt{1-4\left(-650\right)}}{2}
ยกกำลังสอง 1
x=\frac{-1±\sqrt{1+2600}}{2}
คูณ -4 ด้วย -650
x=\frac{-1±\sqrt{2601}}{2}
เพิ่ม 1 ไปยัง 2600
x=\frac{-1±51}{2}
หารากที่สองของ 2601
x=\frac{50}{2}
ตอนนี้ แก้สมการ x=\frac{-1±51}{2} เมื่อ ± เป็นบวก เพิ่ม -1 ไปยัง 51
x=25
หาร 50 ด้วย 2
x=-\frac{52}{2}
ตอนนี้ แก้สมการ x=\frac{-1±51}{2} เมื่อ ± เป็นลบ ลบ 51 จาก -1
x=-26
หาร -52 ด้วย 2
x=25 x=-26
สมการได้รับการแก้ไขแล้ว
x^{2}+x-650=0
สมการกำลังสองเช่นนี้จะสามารถหาค่าได้ ด้วยการทำให้เป็นกำลังสองสมบูรณ์ ในการทำให้เป็นกำลังสองสมบูรณ์ ขั้นแรกสมการต้องอยู่ในรูปแบบ x^{2}+bx=c
x^{2}+x-650-\left(-650\right)=-\left(-650\right)
เพิ่ม 650 ไปยังทั้งสองข้างของสมการ
x^{2}+x=-\left(-650\right)
ลบ -650 จากตัวเองทำให้เหลือ 0
x^{2}+x=650
ลบ -650 จาก 0
x^{2}+x+\left(\frac{1}{2}\right)^{2}=650+\left(\frac{1}{2}\right)^{2}
หาร 1 สัมประสิทธิ์ของพจน์ x ด้วย 2 เพื่อรับ \frac{1}{2} จากนั้นเพิ่มกำลังสองของ \frac{1}{2} ไปยังทั้งสองข้างของสมการ ขั้นตอนนี้จะทำให้ด้านซ้ายของสมการเป็นกำลังสองสมบูรณ์
x^{2}+x+\frac{1}{4}=650+\frac{1}{4}
ยกกำลังสอง \frac{1}{2} โดยยกกำลังสองทั้งตัวเศษและตัวส่วนของเศษส่วน
x^{2}+x+\frac{1}{4}=\frac{2601}{4}
เพิ่ม 650 ไปยัง \frac{1}{4}
\left(x+\frac{1}{2}\right)^{2}=\frac{2601}{4}
ตัวประกอบx^{2}+x+\frac{1}{4} โดยทั่วไป แล้ว เมื่อx^{2}+bx+cเป็นกําลังสองสมบูรณ์ จะสามารถแยกตัวประกอบเป็น\left(x+\frac{b}{2}\right)^{2}ได้เสมอ
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2601}{4}}
หารากที่สองของทั้งสองข้างของสมการ
x+\frac{1}{2}=\frac{51}{2} x+\frac{1}{2}=-\frac{51}{2}
ทำให้ง่ายขึ้น
x=25 x=-26
ลบ \frac{1}{2} จากทั้งสองข้างของสมการ