หาค่า
\frac{1}{10000000}=0.0000001
แยกตัวประกอบ
\frac{1}{2 ^ {7} \cdot 5 ^ {7}} = 1 \times 10^{-7}
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(10^{-1236}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
คำนวณ 10 กำลังของ -72 และรับ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
คำนวณ 10 กำลังของ -1236 และรับ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
คูณ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} และ 0 เพื่อรับ 0
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
คูณ 0 และ 0 เพื่อรับ 0
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
คูณ 0 และ 5 เพื่อรับ 0
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+\frac{1}{100000000000000}\right)}{10^{-72}+0\times 0\times 5}}
คำนวณ 10 กำลังของ -14 และรับ \frac{1}{100000000000000}
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\times \frac{1}{100000000000000}}{10^{-72}+0\times 0\times 5}}
เพิ่ม 0 และ \frac{1}{100000000000000} เพื่อให้ได้รับ \frac{1}{100000000000000}
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{10^{-72}+0\times 0\times 5}}
คูณ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} และ \frac{1}{100000000000000} เพื่อรับ \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 0\times 5}}
คำนวณ 10 กำลังของ -72 และรับ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 5}}
คูณ 0 และ 0 เพื่อรับ 0
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0}}
คูณ 0 และ 5 เพื่อรับ 0
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}}}
เพิ่ม \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} และ 0 เพื่อให้ได้รับ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 1000000000000000000000000000000000000000000000000000000000000000000000000}
หาร \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} ด้วย \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} โดยคูณ \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} ด้วยส่วนกลับของ \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}
\sqrt{\frac{1}{100000000000000}}
คูณ \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} และ 1000000000000000000000000000000000000000000000000000000000000000000000000 เพื่อรับ \frac{1}{100000000000000}
\frac{1}{10000000}
เขียนรากที่สองของการหาร \frac{1}{100000000000000} เป็นการหารของรากในสี่เหลี่ยม \frac{\sqrt{1}}{\sqrt{100000000000000}} ใช้รากที่สองของทั้งตัวเศษและตัวส่วน
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}