ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x-3y=4,x+y=8
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x-3y=4
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=3y+4
เพิ่ม 3y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{2}\left(3y+4\right)
หารทั้งสองข้างด้วย 2
x=\frac{3}{2}y+2
คูณ \frac{1}{2} ด้วย 3y+4
\frac{3}{2}y+2+y=8
ทดแทน \frac{3y}{2}+2 สำหรับ x ในอีกสมการหนึ่ง x+y=8
\frac{5}{2}y+2=8
เพิ่ม \frac{3y}{2} ไปยัง y
\frac{5}{2}y=6
ลบ 2 จากทั้งสองข้างของสมการ
y=\frac{12}{5}
หารทั้งสองข้างของสมการด้วย \frac{5}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=\frac{3}{2}\times \frac{12}{5}+2
ทดแทน \frac{12}{5} สำหรับ y ใน x=\frac{3}{2}y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{18}{5}+2
คูณ \frac{3}{2} ครั้ง \frac{12}{5} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{28}{5}
เพิ่ม 2 ไปยัง \frac{18}{5}
x=\frac{28}{5},y=\frac{12}{5}
ระบบถูกแก้แล้วในขณะนี้
2x-3y=4,x+y=8
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&-3\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{3}{5}\times 8\\-\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{5}\\\frac{12}{5}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{28}{5},y=\frac{12}{5}
แยกเมทริกซ์องค์ประกอบ x และ y
2x-3y=4,x+y=8
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x-3y=4,2x+2y=2\times 8
เพื่อทำให้ 2x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
2x-3y=4,2x+2y=16
ทำให้ง่ายขึ้น
2x-2x-3y-2y=4-16
ลบ 2x+2y=16 จาก 2x-3y=4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-3y-2y=4-16
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-5y=4-16
เพิ่ม -3y ไปยัง -2y
-5y=-12
เพิ่ม 4 ไปยัง -16
y=\frac{12}{5}
หารทั้งสองข้างด้วย -5
x+\frac{12}{5}=8
ทดแทน \frac{12}{5} สำหรับ y ใน x+y=8 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{28}{5}
ลบ \frac{12}{5} จากทั้งสองข้างของสมการ
x=\frac{28}{5},y=\frac{12}{5}
ระบบถูกแก้แล้วในขณะนี้