ข้ามไปที่เนื้อหาหลัก
หาค่า y, x
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y-2x=-3
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
y-2x=-3,y+x=-6
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
y-2x=-3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
y=2x-3
เพิ่ม 2x ไปยังทั้งสองข้างของสมการ
2x-3+x=-6
ทดแทน 2x-3 สำหรับ y ในอีกสมการหนึ่ง y+x=-6
3x-3=-6
เพิ่ม 2x ไปยัง x
3x=-3
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=-1
หารทั้งสองข้างด้วย 3
y=2\left(-1\right)-3
ทดแทน -1 สำหรับ x ใน y=2x-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-2-3
คูณ 2 ด้วย -1
y=-5
เพิ่ม -3 ไปยัง -2
y=-5,x=-1
ระบบถูกแก้แล้วในขณะนี้
y-2x=-3
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
y-2x=-3,y+x=-6
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-2\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-3\right)+\frac{2}{3}\left(-6\right)\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\left(-6\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-5,x=-1
แยกเมทริกซ์องค์ประกอบ y และ x
y-2x=-3
พิจารณาสมการแรก ลบ 2x จากทั้งสองด้าน
y-2x=-3,y+x=-6
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
y-y-2x-x=-3+6
ลบ y+x=-6 จาก y-2x=-3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2x-x=-3+6
เพิ่ม y ไปยัง -y ตัดพจน์ y และ -y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-3x=-3+6
เพิ่ม -2x ไปยัง -x
-3x=3
เพิ่ม -3 ไปยัง 6
x=-1
หารทั้งสองข้างด้วย -3
y-1=-6
ทดแทน -1 สำหรับ x ใน y+x=-6 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-5
เพิ่ม 1 ไปยังทั้งสองข้างของสมการ
y=-5,x=-1
ระบบถูกแก้แล้วในขณะนี้