หาค่า y, x
x=0
y=-3
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y-\frac{x}{3}=-3
พิจารณาสมการแรก ลบ \frac{x}{3} จากทั้งสองด้าน
3y-x=-9
คูณทั้งสองข้างของสมการด้วย 3
3y-x=-9,y+4x=-3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3y-x=-9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ y โดยแยก y ทางด้านซ้ายของเครื่องหมายเท่ากับ
3y=x-9
เพิ่ม x ไปยังทั้งสองข้างของสมการ
y=\frac{1}{3}\left(x-9\right)
หารทั้งสองข้างด้วย 3
y=\frac{1}{3}x-3
คูณ \frac{1}{3} ด้วย x-9
\frac{1}{3}x-3+4x=-3
ทดแทน \frac{x}{3}-3 สำหรับ y ในอีกสมการหนึ่ง y+4x=-3
\frac{13}{3}x-3=-3
เพิ่ม \frac{x}{3} ไปยัง 4x
\frac{13}{3}x=0
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=0
หารทั้งสองข้างของสมการด้วย \frac{13}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
y=-3
ทดแทน 0 สำหรับ x ใน y=\frac{1}{3}x-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-3,x=0
ระบบถูกแก้แล้วในขณะนี้
y-\frac{x}{3}=-3
พิจารณาสมการแรก ลบ \frac{x}{3} จากทั้งสองด้าน
3y-x=-9
คูณทั้งสองข้างของสมการด้วย 3
3y-x=-9,y+4x=-3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&-1\\1&4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-1\right)}&-\frac{-1}{3\times 4-\left(-1\right)}\\-\frac{1}{3\times 4-\left(-1\right)}&\frac{3}{3\times 4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&\frac{1}{13}\\-\frac{1}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\left(-9\right)+\frac{1}{13}\left(-3\right)\\-\frac{1}{13}\left(-9\right)+\frac{3}{13}\left(-3\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
y=-3,x=0
แยกเมทริกซ์องค์ประกอบ y และ x
y-\frac{x}{3}=-3
พิจารณาสมการแรก ลบ \frac{x}{3} จากทั้งสองด้าน
3y-x=-9
คูณทั้งสองข้างของสมการด้วย 3
3y-x=-9,y+4x=-3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
3y-x=-9,3y+3\times 4x=3\left(-3\right)
เพื่อทำให้ 3y และ y เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
3y-x=-9,3y+12x=-9
ทำให้ง่ายขึ้น
3y-3y-x-12x=-9+9
ลบ 3y+12x=-9 จาก 3y-x=-9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-x-12x=-9+9
เพิ่ม 3y ไปยัง -3y ตัดพจน์ 3y และ -3y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-13x=-9+9
เพิ่ม -x ไปยัง -12x
-13x=0
เพิ่ม -9 ไปยัง 9
x=0
หารทั้งสองข้างด้วย -13
y=-3
ทดแทน 0 สำหรับ x ใน y+4x=-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
y=-3,x=0
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}