ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

y-2x=-12
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
x-y=7,-2x+y=-12
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=7
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y+7
เพิ่ม y ไปยังทั้งสองข้างของสมการ
-2\left(y+7\right)+y=-12
ทดแทน y+7 สำหรับ x ในอีกสมการหนึ่ง -2x+y=-12
-2y-14+y=-12
คูณ -2 ด้วย y+7
-y-14=-12
เพิ่ม -2y ไปยัง y
-y=2
เพิ่ม 14 ไปยังทั้งสองข้างของสมการ
y=-2
หารทั้งสองข้างด้วย -1
x=-2+7
ทดแทน -2 สำหรับ y ใน x=y+7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=5
เพิ่ม 7 ไปยัง -2
x=5,y=-2
ระบบถูกแก้แล้วในขณะนี้
y-2x=-12
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
x-y=7,-2x+y=-12
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-12\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}7\\-12\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\-2&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}7\\-12\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}7\\-12\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-\left(-2\right)\right)}&-\frac{-1}{1-\left(-\left(-2\right)\right)}\\-\frac{-2}{1-\left(-\left(-2\right)\right)}&\frac{1}{1-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\-12\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-2&-1\end{matrix}\right)\left(\begin{matrix}7\\-12\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7-\left(-12\right)\\-2\times 7-\left(-12\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=5,y=-2
แยกเมทริกซ์องค์ประกอบ x และ y
y-2x=-12
พิจารณาสมการที่สอง ลบ 2x จากทั้งสองด้าน
x-y=7,-2x+y=-12
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-2x-2\left(-1\right)y=-2\times 7,-2x+y=-12
เพื่อทำให้ x และ -2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-2x+2y=-14,-2x+y=-12
ทำให้ง่ายขึ้น
-2x+2x+2y-y=-14+12
ลบ -2x+y=-12 จาก -2x+2y=-14 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
2y-y=-14+12
เพิ่ม -2x ไปยัง 2x ตัดพจน์ -2x และ 2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
y=-14+12
เพิ่ม 2y ไปยัง -y
y=-2
เพิ่ม -14 ไปยัง 12
-2x-2=-12
ทดแทน -2 สำหรับ y ใน -2x+y=-12 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-2x=-10
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
x=5
หารทั้งสองข้างด้วย -2
x=5,y=-2
ระบบถูกแก้แล้วในขณะนี้