หาค่า x, y
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
หาค่า x, y (complex solution)
\left\{\begin{matrix}x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{; }x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{, }&m\neq -\frac{\sqrt{2}i}{2}\text{ and }m\neq \frac{\sqrt{2}i}{2}\\x=-\frac{\left(-2m+\sqrt{2}\right)^{2}-4}{2m\left(-2m+\sqrt{2}\right)}\text{, }y=\frac{2m^{2}-2\sqrt{2}m+3}{-2m+\sqrt{2}}\text{, }&m=-\frac{\sqrt{2}i}{2}\text{ or }m=\frac{\sqrt{2}i}{2}\end{matrix}\right.
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
y=mx-2m+\sqrt{2}
พิจารณาสมการที่สอง ใช้คุณสมบัติการแจกแจงเพื่อคูณ m ด้วย x-2
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
ทดแทน mx-2m+\sqrt{2} สำหรับ y ในอีกสมการหนึ่ง x^{2}+2y^{2}=8
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
ยกกำลังสอง mx-2m+\sqrt{2}
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
คูณ 2 ด้วย m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
เพิ่ม x^{2} ไปยัง 2m^{2}x^{2}
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
ลบ 8 จากทั้งสองข้างของสมการ
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
สมการนี้อยู่ในรูปมาตรฐาน: ax^{2}+bx+c=0 ใช้ 1+2m^{2} แทน a, 2\times 2m\left(-2m+\sqrt{2}\right) แทน b และ -4+8m^{2}-8m\sqrt{2} แทน c ในสูตรกำลังสอง \frac{-b±\sqrt{b^{2}-4ac}}{2a}
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
ยกกำลังสอง 2\times 2m\left(-2m+\sqrt{2}\right)
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
คูณ -4 ด้วย 1+2m^{2}
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
คูณ -4-8m^{2} ด้วย -4+8m^{2}-8m\sqrt{2}
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
เพิ่ม 16m^{2}\left(-2m+\sqrt{2}\right)^{2} ไปยัง 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
หารากที่สองของ 16+32m^{2}+32m\sqrt{2}
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
คูณ 2 ด้วย 1+2m^{2}
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
ตอนนี้ แก้สมการ x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} เมื่อ ± เป็นบวก เพิ่ม -4m\left(-2m+\sqrt{2}\right) ไปยัง 4\sqrt{1+2m^{2}+2m\sqrt{2}}
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
หาร -4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} ด้วย 2+4m^{2}
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
ตอนนี้ แก้สมการ x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} เมื่อ ± เป็นลบ ลบ 4\sqrt{1+2m^{2}+2m\sqrt{2}} จาก -4m\left(-2m+\sqrt{2}\right)
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
หาร 8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} ด้วย 2+4m^{2}
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
มีสองได้ผลเฉลยสำหรับ x:\frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} และ \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} ทดแทน \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} สำหรับ x ในสมการ y=mx-2m+\sqrt{2} เพื่อหาวิธีแก้ไขที่สอดคล้องกันสำหรับ y ซึ่งเป็นไปตามสมการทั้งสอง
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
คูณ m ด้วย \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
แทนค่า \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} สำหรับ x ในสมการ y=mx-2m+\sqrt{2} และหาค่าเพื่อหาผลเฉลยที่สอดคล้องกันสำหรับ y ซึ่งเป็นไปตามสมการทั้งสอง
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
คูณ m ด้วย \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}