หาค่า x, y
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
y = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+y=1,x-2y=14
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y+1
ลบ y จากทั้งสองข้างของสมการ
-y+1-2y=14
ทดแทน -y+1 สำหรับ x ในอีกสมการหนึ่ง x-2y=14
-3y+1=14
เพิ่ม -y ไปยัง -2y
-3y=13
ลบ 1 จากทั้งสองข้างของสมการ
y=-\frac{13}{3}
หารทั้งสองข้างด้วย -3
x=-\left(-\frac{13}{3}\right)+1
ทดแทน -\frac{13}{3} สำหรับ y ใน x=-y+1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{13}{3}+1
คูณ -1 ด้วย -\frac{13}{3}
x=\frac{16}{3}
เพิ่ม 1 ไปยัง \frac{13}{3}
x=\frac{16}{3},y=-\frac{13}{3}
ระบบถูกแก้แล้วในขณะนี้
x+y=1,x-2y=14
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\14\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\1&-2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 14\\\frac{1}{3}-\frac{1}{3}\times 14\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{13}{3}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{16}{3},y=-\frac{13}{3}
แยกเมทริกซ์องค์ประกอบ x และ y
x+y=1,x-2y=14
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-x+y+2y=1-14
ลบ x-2y=14 จาก x+y=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
y+2y=1-14
เพิ่ม x ไปยัง -x ตัดพจน์ x และ -x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
3y=1-14
เพิ่ม y ไปยัง 2y
3y=-13
เพิ่ม 1 ไปยัง -14
y=-\frac{13}{3}
หารทั้งสองข้างด้วย 3
x-2\left(-\frac{13}{3}\right)=14
ทดแทน -\frac{13}{3} สำหรับ y ใน x-2y=14 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x+\frac{26}{3}=14
คูณ -2 ด้วย -\frac{13}{3}
x=\frac{16}{3}
ลบ \frac{26}{3} จากทั้งสองข้างของสมการ
x=\frac{16}{3},y=-\frac{13}{3}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}