หาค่า x, y
x=-7
y=-4
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
2y+1-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
2y-x=-1
ลบ 1 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,-x+2y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x-y=-3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=y-3
เพิ่ม y ไปยังทั้งสองข้างของสมการ
-\left(y-3\right)+2y=-1
ทดแทน y-3 สำหรับ x ในอีกสมการหนึ่ง -x+2y=-1
-y+3+2y=-1
คูณ -1 ด้วย y-3
y+3=-1
เพิ่ม -y ไปยัง 2y
y=-4
ลบ 3 จากทั้งสองข้างของสมการ
x=-4-3
ทดแทน -4 สำหรับ y ใน x=y-3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-7
เพิ่ม -3 ไปยัง -4
x=-7,y=-4
ระบบถูกแก้แล้วในขณะนี้
x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
2y+1-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
2y-x=-1
ลบ 1 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,-x+2y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{1}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-3\right)-1\\-3-1\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-4\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-7,y=-4
แยกเมทริกซ์องค์ประกอบ x และ y
x+3-y=0
พิจารณาสมการแรก ลบ y จากทั้งสองด้าน
x-y=-3
ลบ 3 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
2y+1-x=0
พิจารณาสมการที่สอง ลบ x จากทั้งสองด้าน
2y-x=-1
ลบ 1 จากทั้งสองด้าน สิ่งใดลบออกจากศูนย์จะได้ผลเป็นตัวเองที่เป็นค่าลบ
x-y=-3,-x+2y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-x-\left(-y\right)=-\left(-3\right),-x+2y=-1
เพื่อทำให้ x และ -x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
-x+y=3,-x+2y=-1
ทำให้ง่ายขึ้น
-x+x+y-2y=3+1
ลบ -x+2y=-1 จาก -x+y=3 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
y-2y=3+1
เพิ่ม -x ไปยัง x ตัดพจน์ -x และ x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-y=3+1
เพิ่ม y ไปยัง -2y
-y=4
เพิ่ม 3 ไปยัง 1
y=-4
หารทั้งสองข้างด้วย -1
-x+2\left(-4\right)=-1
ทดแทน -4 สำหรับ y ใน -x+2y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-x-8=-1
คูณ 2 ด้วย -4
-x=7
เพิ่ม 8 ไปยังทั้งสองข้างของสมการ
x=-7
หารทั้งสองข้างด้วย -1
x=-7,y=-4
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}