ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

3x+4y=1,4x+y=2
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
3x+4y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
3x=-4y+1
ลบ 4y จากทั้งสองข้างของสมการ
x=\frac{1}{3}\left(-4y+1\right)
หารทั้งสองข้างด้วย 3
x=-\frac{4}{3}y+\frac{1}{3}
คูณ \frac{1}{3} ด้วย -4y+1
4\left(-\frac{4}{3}y+\frac{1}{3}\right)+y=2
ทดแทน \frac{-4y+1}{3} สำหรับ x ในอีกสมการหนึ่ง 4x+y=2
-\frac{16}{3}y+\frac{4}{3}+y=2
คูณ 4 ด้วย \frac{-4y+1}{3}
-\frac{13}{3}y+\frac{4}{3}=2
เพิ่ม -\frac{16y}{3} ไปยัง y
-\frac{13}{3}y=\frac{2}{3}
ลบ \frac{4}{3} จากทั้งสองข้างของสมการ
y=-\frac{2}{13}
หารทั้งสองข้างของสมการด้วย -\frac{13}{3} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{4}{3}\left(-\frac{2}{13}\right)+\frac{1}{3}
ทดแทน -\frac{2}{13} สำหรับ y ใน x=-\frac{4}{3}y+\frac{1}{3} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{8}{39}+\frac{1}{3}
คูณ -\frac{4}{3} ครั้ง -\frac{2}{13} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{7}{13}
เพิ่ม \frac{1}{3} ไปยัง \frac{8}{39} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{7}{13},y=-\frac{2}{13}
ระบบถูกแก้แล้วในขณะนี้
3x+4y=1,4x+y=2
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}3&4\\4&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\times 4}&-\frac{4}{3-4\times 4}\\-\frac{4}{3-4\times 4}&\frac{3}{3-4\times 4}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{4}{13}\\\frac{4}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}+\frac{4}{13}\times 2\\\frac{4}{13}-\frac{3}{13}\times 2\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\\-\frac{2}{13}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{7}{13},y=-\frac{2}{13}
แยกเมทริกซ์องค์ประกอบ x และ y
3x+4y=1,4x+y=2
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\times 3x+4\times 4y=4,3\times 4x+3y=3\times 2
เพื่อทำให้ 3x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 3
12x+16y=4,12x+3y=6
ทำให้ง่ายขึ้น
12x-12x+16y-3y=4-6
ลบ 12x+3y=6 จาก 12x+16y=4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
16y-3y=4-6
เพิ่ม 12x ไปยัง -12x ตัดพจน์ 12x และ -12x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
13y=4-6
เพิ่ม 16y ไปยัง -3y
13y=-2
เพิ่ม 4 ไปยัง -6
y=-\frac{2}{13}
หารทั้งสองข้างด้วย 13
4x-\frac{2}{13}=2
ทดแทน -\frac{2}{13} สำหรับ y ใน 4x+y=2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x=\frac{28}{13}
เพิ่ม \frac{2}{13} ไปยังทั้งสองข้างของสมการ
x=\frac{7}{13}
หารทั้งสองข้างด้วย 4
x=\frac{7}{13},y=-\frac{2}{13}
ระบบถูกแก้แล้วในขณะนี้