ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
\frac{1}{2}x+\frac{1}{3}y=1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
\frac{1}{2}x=-\frac{1}{3}y+1
ลบ \frac{y}{3} จากทั้งสองข้างของสมการ
x=2\left(-\frac{1}{3}y+1\right)
คูณทั้งสองข้างด้วย 2
x=-\frac{2}{3}y+2
คูณ 2 ด้วย -\frac{y}{3}+1
-\frac{2}{3}y+2+y=1
ทดแทน -\frac{2y}{3}+2 สำหรับ x ในอีกสมการหนึ่ง x+y=1
\frac{1}{3}y+2=1
เพิ่ม -\frac{2y}{3} ไปยัง y
\frac{1}{3}y=-1
ลบ 2 จากทั้งสองข้างของสมการ
y=-3
คูณทั้งสองข้างด้วย 3
x=-\frac{2}{3}\left(-3\right)+2
ทดแทน -3 สำหรับ y ใน x=-\frac{2}{3}y+2 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2+2
คูณ -\frac{2}{3} ด้วย -3
x=4
เพิ่ม 2 ไปยัง 2
x=4,y=-3
ระบบถูกแก้แล้วในขณะนี้
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-\frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}\\-\frac{1}{\frac{1}{2}-\frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-2\\-6&3\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6-2\\-6+3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=4,y=-3
แยกเมทริกซ์องค์ประกอบ x และ y
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
\frac{1}{2}x+\frac{1}{3}y=1,\frac{1}{2}x+\frac{1}{2}y=\frac{1}{2}
เพื่อทำให้ \frac{x}{2} และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย \frac{1}{2}
\frac{1}{2}x-\frac{1}{2}x+\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
ลบ \frac{1}{2}x+\frac{1}{2}y=\frac{1}{2} จาก \frac{1}{2}x+\frac{1}{3}y=1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
เพิ่ม \frac{x}{2} ไปยัง -\frac{x}{2} ตัดพจน์ \frac{x}{2} และ -\frac{x}{2} ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-\frac{1}{6}y=1-\frac{1}{2}
เพิ่ม \frac{y}{3} ไปยัง -\frac{y}{2}
-\frac{1}{6}y=\frac{1}{2}
เพิ่ม 1 ไปยัง -\frac{1}{2}
y=-3
คูณทั้งสองข้างด้วย -6
x-3=1
ทดแทน -3 สำหรับ y ใน x+y=1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=4
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
x=4,y=-3
ระบบถูกแก้แล้วในขณะนี้