ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+y=3,-2x-4y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+y=3
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-y+3
ลบ y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-y+3\right)
หารทั้งสองข้างด้วย 2
x=-\frac{1}{2}y+\frac{3}{2}
คูณ \frac{1}{2} ด้วย -y+3
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)-4y=-1
ทดแทน \frac{-y+3}{2} สำหรับ x ในอีกสมการหนึ่ง -2x-4y=-1
y-3-4y=-1
คูณ -2 ด้วย \frac{-y+3}{2}
-3y-3=-1
เพิ่ม y ไปยัง -4y
-3y=2
เพิ่ม 3 ไปยังทั้งสองข้างของสมการ
y=-\frac{2}{3}
หารทั้งสองข้างด้วย -3
x=-\frac{1}{2}\left(-\frac{2}{3}\right)+\frac{3}{2}
ทดแทน -\frac{2}{3} สำหรับ y ใน x=-\frac{1}{2}y+\frac{3}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{1}{3}+\frac{3}{2}
คูณ -\frac{1}{2} ครั้ง -\frac{2}{3} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{11}{6}
เพิ่ม \frac{3}{2} ไปยัง \frac{1}{3} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{11}{6},y=-\frac{2}{3}
ระบบถูกแก้แล้วในขณะนี้
2x+y=3,-2x-4y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-2\right)}&-\frac{1}{2\left(-4\right)-\left(-2\right)}\\-\frac{-2}{2\left(-4\right)-\left(-2\right)}&\frac{2}{2\left(-4\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{6}\left(-1\right)\\-\frac{1}{3}\times 3-\frac{1}{3}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{6}\\-\frac{2}{3}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{11}{6},y=-\frac{2}{3}
แยกเมทริกซ์องค์ประกอบ x และ y
2x+y=3,-2x-4y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
-2\times 2x-2y=-2\times 3,2\left(-2\right)x+2\left(-4\right)y=2\left(-1\right)
เพื่อทำให้ 2x และ -2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย -2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
-4x-2y=-6,-4x-8y=-2
ทำให้ง่ายขึ้น
-4x+4x-2y+8y=-6+2
ลบ -4x-8y=-2 จาก -4x-2y=-6 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-2y+8y=-6+2
เพิ่ม -4x ไปยัง 4x ตัดพจน์ -4x และ 4x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
6y=-6+2
เพิ่ม -2y ไปยัง 8y
6y=-4
เพิ่ม -6 ไปยัง 2
y=-\frac{2}{3}
หารทั้งสองข้างด้วย 6
-2x-4\left(-\frac{2}{3}\right)=-1
ทดแทน -\frac{2}{3} สำหรับ y ใน -2x-4y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
-2x+\frac{8}{3}=-1
คูณ -4 ด้วย -\frac{2}{3}
-2x=-\frac{11}{3}
ลบ \frac{8}{3} จากทั้งสองข้างของสมการ
x=\frac{11}{6}
หารทั้งสองข้างด้วย -2
x=\frac{11}{6},y=-\frac{2}{3}
ระบบถูกแก้แล้วในขณะนี้